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Abstract: A generalized class of estimator representing a class of estimators using auxiliary information in the 

form of mean and variance is proposed. The expression for bias and mean square error are found and it is 

shown that the proposed generalized class of estimator is more efficient than few of the estimators available in 

the literature. An empirical study is also included as an illustration.   

  

Keywords : Auxiliary information, Bias, Mean square error and Taylor's Series Expansion. 

 

I. INTRODUCTION 
It is well known that the use of auxiliary information in sample surveys results in substantial improvement in the 

precision of the population parameters. By using the auxiliary information in different forms, estimators for 

population parameters mainly population mean and variance are studied and are available in the literature. 

Consider a finite population U with N units (U1, U2, . . . , UN ) for each of which the information is available on 

auxiliary variable X, Y being the study variable. 

Let us denote by  
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Also, let a sample of size n be drawn with simple random sample without replacement to estimate the population 

variance of the study variable Y. 

Let 
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  = sample variance of auxiliary variable X. 

For simplicity, we assume that N is large enough as compared to n so that the finite population correction terms 

are ignored. 
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In order to have an estimate of population variance of the study variable Y, assuming the knowledge of mean 

and variance of auxiliary character X, proposed generalized class of estimator is given by 
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,,

x
sxyg  with respect to 

2
y  at T =  22

,,
X

SXY  

is zero, that is  

 
  0,,

22

2
2

2

00























T

x
sxyg

y

g         (1.4) 

 

II.  BIAS AND MEAN SQUARE ERROR OF THE PROPOSED ESTIMATOR 
In order to obtain bias and mean square error, let us denote by 
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Now expanding  22
,,

x
sxygt   in the third order Taylor's series about the point T =  22
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X

SXY , we have 
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Now using the conditions given in (1.2), (1.3) and (1.4), we have to the first degree of approximation 
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Now using (2.4) in (1.1), we have 
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 Now taking expectation on both the sides of (2.5), the bias in g
d  to the first degree of approximation is given 

by 
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using the values of the expectation given in (2.2) and (2.3), we have 
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Now squaring (2.5) on both the sides and then taking expectation, the mean square error to the first degree of 

approximation is given by     
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using values of the expectation given in (2.2) and (2.3), we have 
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For minimizing (2.7) in two unknowns 
1

g  and 
2

g , the normal equations after differentiating (2.7) partially 

with respect to 
1

g  and 
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g  are 
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Solving (2.8) and (2.9) for 
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Now adding (2.12), (2.13) and (2.14), we get 
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on adding (2.16) and (2.17), we get 
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putting (2.15) and (2.18) in (2.7), we get 
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III. EFFICIENCY COMPARISON WITH THE AVAILABLE ESTIMATORS 
For comparing the efficiency of the proposed generalized estimator, let us consider the following  

 

(i) Usual Conventional unbiased Estimator of Population Variance in case of SRSWOR   
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from (3.1) and (2.19), it is clear that the proposed generalized class of estimator has mean square error lesser 

than the usual conventional unbiased estimator. 

 

(ii) Estimator of Population Variance given by Peeyush Misra and R. Karan Singh 
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from (3.2) and (2.19), it is clear that the proposed generalized class of estimator has mean square error lesser 

than the mean square error of the estimator of population variance given by Peeyush Misra and R. Karan 

Singh. 
 

IV. EMPIRICAL STUDY 
For comparing efficiency of the proposed generalized class of estimator, let us consider the data given in, 

William G. Cochran (1977), Sampling Techniques, 3
rd

 Edition, John Wiley and Sons, New York, dealing with 

Paralytic Polio Cases ‘Placebo’ (Y) group, Paralytic Polio Cases in not inoculated group (X), we have 
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  X  = 8370.6 
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We have  
1

d̂MSE = 9.534136695. 
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d̂MSE  =  
3

d̂MSE  = 5.958992179. 

   
g

dMSE  = 5.512540843. 
 

Table 4.1: PRE of the Proposed Estimator over the Estimators Described Above 
 

 
 

V. CONCLUSION 

The comparative study and empirical study of the proposed generalized sampling estimator of population 

variance establishes its superiority in the sense of having minimum mean square error over the usual 

conventional unbiased estimator of population variance in case of SRSWOR and the estimator of population 

variance given by Peeyush Misra and R. Karan Singh. 
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