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ABSTRACT :The power tower of an integer is defined as the iterated exponentiation of the integer, and is 

also called a tetration. If it is iterated for n times, it is called a power tower of order n. Using the technique of 

congruence, we find the pattern of the digital root, along with the last digit, of a power tower when its order 

increases. 
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I. INTRODUCTION 
For a positive realnumber 𝑎 , the numbers𝑎, 𝑎2, 𝑎3 , ⋯  are called the powers of 𝑎 . The numbers 

𝑎, 𝑎𝑎 , 𝑎𝑎𝑎 , ⋯ are called the power towersof 𝑎, or tetrations of 𝑎.However, the iterated exponential form seems 

not very clearly well-defined. So here we shall clarify the way how to evaluate a power tower first. The form 

𝑎𝑏𝑐  shall be operated as 𝑎 𝑏𝑐  instead of  𝑎𝑏 𝑐 . That means we will operate it from the very top of the exponent 

downward to the base. For example, 2222

 will be operated as 2 2 22  = 216 = 65536, and not as   22 2 2 =

28 = 256.The power tower 𝑎⋰𝑎 
𝑛

 with 𝑛iterated 𝑎’s (including the base) is said to be tetrated to the order 𝑛. 

Historically, there have been several different notations for the power tower of 𝑎 of order 𝑛. In [2] Beardon 

denoted it by 𝑎𝑛 , in [8] Knuth used the notation  𝑎 ↑↑ 𝑛 , and in [10] Maurer introduced the notation 

𝑎𝑛 .Maurer’s notation was later adopted by Goodsteinin [6], and then popularized by Rucker (see [11]). So in 

this paper, we will also use Maurer’s notation. Using the last example, we will denote 2222

by 24 .The study of 

power towers can be long traced back to Euler’s work (see [5]).However at that time, and actually later on in 

many other studies, the focuswas on the convergence of a power tower of infinite order. In this paper, we will 

focus on the area more towards to recreational mathematics. We will study the last digit and the digital root of a 

power tower of a positive integer, and find a pattern when the order increases. For a more general knowledge of 

power towers, interested reader may see [11]. 

 

The numbers we are using now are based on a base-10 system. Any number can be expended to a sum 

of powers of 10 with coefficients less than 10. For example, the expended form of 1234is 1 ∙ 103 + 2 ∙ 102 +
3 ∙ 101 + 4. Therefore, the last coefficient in the expended form in descending order is the last digit of the 

number. For our convenience, we will use 𝑙𝑑(𝑛) in this paper to indicate the last digit of the number 𝑛. 

Proposition 1.1.For any natural number 𝑛,𝑙𝑑 𝑛 = 𝑎 where 0 ≤ 𝑎 ≤ 9 and 𝑎 ≡ 𝑛 (𝑚𝑜𝑑 10). 

Proof.Consider theexpended form of 𝑛. Since 𝑛 =  𝑎𝑖 ∙ 10𝑖𝑘
𝑖=0 = 10 ∙ 𝑚 + 𝑎0 for some 𝑘, 𝑚, and all 

𝑎𝑖 ≤ 9, we have 𝑛 ≡ 𝑎0 (𝑚𝑜𝑑 10). By definition, 𝑙𝑑 𝑛 = 𝑎0, hence proving the proposition.∎ 

We know that the expended form for any number in base 10 is unique.Therefore, the last digit of any 

number is also unique by its definition. For other properties of the last digits not listed here, we refer to [2]. 

 

Given a number, say 1234, we will get a new (but smaller) number by adding all digits together. In the 

example, 1 + 2 + 3 + 4 = 10. If the new number is not a one-digit number, we do it again and add all digits of 

the new number together. Repeating this process we will definitely reach a one digit number eventually. Back to 

our example, 1 + 0 = 1. That one-digit number is called the digital root of the original number. We will use 

𝑑𝑟(𝑛)to denote the digital root of 𝑛. Therefore, 𝑑𝑟 1234 = 1. Apparently, a digital root has to be positive and 

it can never be zero, since we are (repeatedly) adding all non-negative digits together and they cannot be all zero. 

Congruence can also be used to study the digital root. But, instead of base 10, we will use base 9. We 

notice that 10𝑘 ≡ 1 (𝑚𝑜𝑑 9)  for any non-negative integer 𝑘 . Therefore we have the following alternative 

definition of digital root. 
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Proposition 1.2.(Congruence Formula for Digital Root) For a natural number𝑛, either 𝑑𝑟 𝑛 = 9 if and only 

if𝑛 ≡ 0 (𝑚𝑜𝑑 9), or 𝑑𝑟 𝑛 = 𝑎  if and only if𝑛 ≡ 𝑎 (𝑚𝑜𝑑 9) where 𝑎 ∈ ℕ and 𝑎 < 9. 

Proof.The “only if” part is trivial according to the definition, so we will only prove the “if” part. We 

again consider theexpended form of 𝑛. First, 𝑛 =  𝑎𝑖 ∙ 10𝑖𝑘
𝑖=0 ≡  𝑎𝑖

𝑘
𝑖=0  (𝑚𝑜𝑑 9). If  𝑎𝑖

𝑘
𝑖=0  is not a one-digit 

number, it can also be expressed as an expended form  𝑏𝑖 ∙ 10𝑖𝑙
𝑖=0 .  Repeating the process, we have  𝑏𝑖 ∙

𝑙
𝑖=0

10𝑖≡𝑖=0𝑙𝑏𝑖 (𝑚𝑜𝑑 9). Notice that every time we repeat the process we get a smaller natural number. Eventually 

we will reach a one-digit number, which is still congruent to 𝑛modulo 9. Since in each step, the coefficients of 

the expended form cannot be all zero, this final number cannot be zero. So it ranges from 1to 9. If this number is 

less than 9, it is the 𝑎 in the proposition statement. By the nature of how we find 𝑎, it is the digital root by 

definition. However, if 𝑛 ≡ 0 (𝑚𝑜𝑑 9), the last final number in the above process can only be 9 since it’s the 

only non-zero one-digit number that is congruent to 0 modulo 9. Therefore by definition, the digital root is9. ∎ 

The uniqueness of digital root is not as clear as the one of last digit. So here we will provide a proof for 

uniqueness. 

Proposition 1.3.For any natural number𝑛, its digital root 𝑑𝑟 𝑛  is unique. 

Proof.Assume that 𝑑𝑟(𝑛) is not unique, there must be at least two distinct natural numbers 𝑎  and 

𝑏such that 𝑑𝑟 𝑛 = 𝑎and 𝑑𝑟 𝑛 = 𝑏 . Applying Proposition 1.2, we have𝑎 − 𝑏 ≡ 𝑛 − 𝑛 = 0 (𝑚𝑜𝑑 9). That 

means 𝑎 = 9𝑘 + 𝑏 for a positive integer 𝑘. However, if 𝑏 ≥ 1and 𝑘 ≥ 1, 𝑎 = 9𝑘 + 𝑏 is not a one-digit number, 

which contradicts the assumption of 𝑎 being a digital root. ∎ 

For more properties about digital roots, interested readers may see [1] and [9].  

 

II. THE LAST DIGITOF A POWER TOWER 
The last digit of a number seems very trivial. But, when we encounter some huge numbers like power 

towers, which cannot be easily written in expended form, finding their last digits is not simple anymore and 

requires some mathematical background. The topic of last digit of power towers has been discussed in [2, pp.33-

36]. However, many details and proofs were omitted in the discussion. So here we summarize the properties, 

and provide all the missing proofs. We will discuss them according to their numerical order, and use congruence 

as our tool. 

 

The power tower of 1 is a trivial case. We already know that 1 raised to any power is still 1. So 

𝑙𝑑 1𝑛  = 1 for any 𝑛. 

 

To formulize the last digit of power towers of 2, we first analyze the pattern of last digit of powers of 2. 

We notice that the last digits of  21 , 22, 23 , 24, 25, 26 , ⋯   form the sequence  2, 4, 8, 6, 2,4,⋯  , which repeats 

every 4 numbers. This can be proved this way. We notice that 6 ∙ 2 ≡ 2  𝑚𝑜𝑑 10 , 6 ∙ 4 ≡ 4  𝑚𝑜𝑑 10 , 

6 ∙ 8 ≡ 8  𝑚𝑜𝑑 10 , and 6 ∙ 6 ≡ 6 (𝑚𝑜𝑑 10) .So, 24𝑘+𝑖 = 24𝑘 ∙ 2𝑖 ≡ 6𝑘 ∙ 2𝑖 ≡ 6 ∙ 2𝑖 ≡ 2𝑖  (𝑚𝑜𝑑 10) , where 

𝑘 ∈ ℕ and 𝑖 ∈  1,2,3 . The one we are particularly interested is the special case that 𝑙𝑑 24𝑘 = 6 for any natural 

number 𝑘. Since 2𝑛 = 2 2𝑛−1   and 4| 2𝑛−1  for 𝑛 ≥ 3, 𝑙𝑑 2𝑛  = 6 for 𝑛 ≥ 3. As for the cases 𝑛 = 1and 𝑛 = 2, 

21  and 22  are the only one-digit numbers in the power towers of 2, we can easily find their last digits, which 

are 2 and 4 respectively. 

 

We still start with the powers of 3. The last digits of powers of 3 form the sequence  3,9,7,1,3,9,⋯  . 
We notice that it is another 4-number repeating sequence. This time the key element is 34 = 81 ≡ 1 (𝑚𝑜𝑑 10). 

Therefore, 34𝑘+𝑖 = 34𝑘 ∙ 3𝑖 ≡ 1 ∙ 3𝑖 ≡ 3𝑖  (𝑚𝑜𝑑 10), where 𝑘 ∈ ℕ and 𝑖 ∈  1,2,3 . In the sequence of power 

towers of 3, 31 = 3 and 32 = 27, so their last digits are 3 and 7 respectively. For 𝑙𝑑( 3𝑛 )when 𝑛 ≥ 3, we shall 

prove that it remains constant7 no matter what 𝑛 is. We first notice that 3 ≡  −1  (𝑚𝑜𝑑4), and 3𝑛−2  is odd. 

That means, 3𝑛−1 = 3 3𝑛−2  ≡  −1  3𝑛−2  =  −1 ≡ 3 (𝑚𝑜𝑑 4) . Therefore 3𝑛 = 3 3𝑛−1  = 34𝑘+3 = 34𝑘 ∙
33 ≡ 33 ≡ 7 (𝑚𝑜𝑑 10)if 𝑛 ≥ 3. 

 

The last digits of the powers of 4 form a 2-number repeating sequence  4,6,4,6,⋯  . Since 𝑙𝑑 4 =
4and 𝑙𝑑 42 = 6, we can easily verify that 𝑙𝑑 42𝑘 = 𝑙𝑑 6𝑘 = 6 and 𝑙𝑑 42𝑘+1 = 𝑙𝑑 42𝑘 ∙ 4 = 𝑙𝑑 6 ∙ 4 = 4. 

As for power towers of 4, apparently 4𝑛−1  is even when 𝑛 ≥ 2. Therefore 4𝑛 = 4 4𝑛−1  = 42𝑘 ≡ 6 (𝑚𝑜𝑑 10). 

 

The power towers of 5 and 6 arealso trivial cases. Since 5𝑘 ≡ 5 (𝑚𝑜𝑑 10), and 6𝑘 ≡ 6 (𝑚𝑜𝑑 10), 

𝑙𝑑 5𝑛  = 5 and 𝑙𝑑 6𝑛  = 6 for any 𝑛 ∈ ℕ. 
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We first notice that 7 ≡  −3  (𝑚𝑜𝑑 10) and 7𝑛−1  is odd for any 𝑛 ≥ 2. That means 7𝑛 ≡ − 3 7𝑛−1    

(mod 10). We can then use the pattern of powers of 3 again to help us analyze power towers of 7.Since 7𝑛−1 ≡

 −1  7𝑛−2  ≡  −1 ≡ 3 (𝑚𝑜𝑑 4), 7𝑛 ≡ − 3 7𝑛−1   = − 34𝑘+3 ≡ − 33 ≡ −7 ≡ 3 (𝑚𝑜𝑑 10) for 𝑛 ≥ 2. 

 

Like the analysis of power towers of 7, we will take advantage of the pattern of powers of 2 to work on 

power towers of 8 . Because 8𝑛−1 = 4𝑘 for any 𝑛 ≥ 2 , apparently an even number, 8𝑛 ≡  −2  8𝑛−1  =

2 8𝑛−1  = 24𝑘 ≡ 6 (𝑚𝑜𝑑 10) for 𝑛 ≥ 2. 

 

We take advantage of the fact that 9 ≡  −1  (𝑚𝑜𝑑 10) , and 9𝑛−1  is odd for any 𝑛 ≥ 2 . 9𝑛 ≡

 −1  9𝑛−1  = −1 9𝑛−1  = −1 ≡ 9 (𝑚𝑜𝑑 10). 

 

We now summarize all the results we just derived. 

 

Result2.1.The sequences of last digits of power towers of integers have the following patterns: 

(i) 𝑙𝑑 1𝑛  = 1for any natural number 𝑛. 

(ii) 𝑙𝑑 21  = 2, 𝑙𝑑 22  = 4, and 𝑙𝑑 2𝑛  = 6 for any natural number 𝑛 ≥ 3. 

(iii) 𝑙𝑑 31  = 3, and 𝑙𝑑 3𝑛  = 7 for any natural number 𝑛 ≥ 2. 

(iv) 𝑙𝑑 41  = 4, and 𝑙𝑑 4𝑛  = 6 for any natural number 𝑛 ≥ 2. 

(v) 𝑙𝑑 5𝑛  = 5for any natural number 𝑛. 

(vi) 𝑙𝑑 6𝑛  = 6for any natural number 𝑛. 

(vii) 𝑙𝑑 71  = 7, and 𝑙𝑑 7𝑛  = 3 for any natural number 𝑛 ≥ 2. 

(viii) 𝑙𝑑 81  = 8, and 𝑙𝑑 8𝑛  = 6 for any natural number 𝑛 ≥ 2. 

(ix) 𝑙𝑑 9𝑛  = 9for any natural number 𝑛. 

 

III. THE DIGITAL ROOT OF A POWER TOWER 
Because the value of a power tower increases dramatically as 𝑛 increases, finding its digital root is a lot 

more difficult than finding the last digit. As in the last section, we will still analyze the sequences of power 

towers according to the numerical order, but we will split some discussions into two or three paragraphs, and 

prove some claims in the midst of the discussion if necessary. As you may expect, congruence is still our main 

tool. 

 

The power tower of 1 is still a trivial case when talking about the digital root. Since 1𝑛 = 1 for any 

natural number 𝑛, 𝑑𝑟 1𝑛  = 1 for any natural number 𝑛. 

 

For power towers of 2, we first handle the two simple cases. 21 = 2, so 𝑑𝑟 21  = 2. 22 = 4, so 

𝑑𝑟 22  = 4. To find the pattern of the rest of the digital roots of the power towers of 2, we will split the 

discussion to two steps. 

Claim 3.1.For any natural number𝑘, 2 24 
𝑘

≡ 7 (𝑚𝑜𝑑 9). 

Proof. We know that 2 24 = 216 = 65536 ≡ 7 (𝑚𝑜𝑑 9) .We also notice that  2 24 
𝑘

= 2 24  24 
𝑘−1

≡

7 24 
𝑘−1

≡  −2  24 
𝑘−1

= 2 24 
𝑘−1

  𝑚𝑜𝑑 9 . Since𝑘  is a finite number, repeating the process we then have 

2 24 
𝑘

≡ 2 24 
𝑘−1

≡ 2 24 
𝑘−2

≡ ⋯ ≡ 2 24 ≡ 7  𝑚𝑜𝑑 9 . ∎ 

Claim 3.2.For any natural number𝑛 ≥ 3, 𝑑𝑟 2𝑛  = 7. 

Proof.If 𝑛 = 3, 23 = 222
= 16 ≡ 7 (𝑚𝑜𝑑 9). If 𝑛 ≥ 4, since 2𝑛 = 2 2𝑛−1  , we want to prove that 

2𝑛−1 =  24 𝑘  for some integer 𝑘,which is equivalent to proving 2𝑛−2 = 4𝑘. This last statement is apparently 

true because 4| 2𝑛−2 if 𝑛 ≥ 4. Therefore, when 𝑛 ≥ 4, 2𝑛 ≡ 7 (𝑚𝑜𝑑 9) according to Claim 3.1. Together with 

the case when𝑛 = 3, we proved that 𝑑𝑟 2𝑛  = 7 when 𝑛 ≥ 3.∎ 

 

Since 31 = 3, 𝑑𝑟 31  = 3. If 𝑛 ≥ 2, we will prove that  𝑑𝑟 3𝑛  = 9. 

Claim 3.3.For any natural number 𝑛 ≥ 2, 𝑑𝑟 3𝑛  = 9. 

Proof. We first consider the powers of 3. We notice that 9|3𝑘 if 𝑘 ≥ 2 . Since 3𝑛 = 3 3𝑛−1  , and 

3𝑛−1 ≥ 2 when 𝑛 ≥ 2, we easily derive that 9| 3𝑛  when 𝑛 ≥ 2. Therefore, 3𝑛 = 9𝑘 ≡ 0 (𝑚𝑜𝑑 9), when 𝑛 ≥ 2. 

Applying proposition 1.2,𝑑𝑟 3𝑛  = 9 when 𝑛 ≥ 2. ∎ 
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Since 41 = 4, 𝑑𝑟 41  = 4. If 𝑛 ≥ 2, we will prove that  𝑑𝑟 4𝑛  = 4 as well. 

Claim 3.4.For any natural number 𝑘, 44𝑘
≡ 4 (𝑚𝑜𝑑 9). 

Proof. We will use mathematical induction to prove this claim. If 𝑘 = 1, 441
= 238 ≡ 4 (𝑚𝑜𝑑 9). 

Assume that 44𝑖
≡ 4 (𝑚𝑜𝑑 9)  for an arbitrary but fixed number 𝑖 . Then 44𝑖+1

= 44𝑖 ∙4 ≡ 44 ≡ 4 (𝑚𝑜𝑑 9) . 

According to the principle of mathematical induction,44k
≡ 4 (mod 9) for any natural number 𝑘. ∎ 

Claim 3.5.For any natural number 𝑛 ≥ 2, 𝑑𝑟 4𝑛  = 4. 

Proof.Since 4𝑛 = 4 4𝑛−1  , and apparently 4𝑛−1 = 4𝑘  for some natural number 𝑘 if 𝑛 ≥ 2, this claim 

follows immediately after Claim 3.4. ∎ 

 

For the digital roots of power towers of 5,we will use a similar approach. Since 51 = 5, 𝑑𝑟 51  = 5. 

If 𝑛 ≥ 2, we will prove that  𝑑𝑟 5𝑛  = 2. 

Claim 3.6.For any odd natural number 𝑘, 55𝑘
≡ 2 (𝑚𝑜𝑑 9). 

Proof. We will still use mathematical induction to prove this claim. If 𝑘 = 1 , 551
= 3125 ≡

2 (𝑚𝑜𝑑 9). Assume that 552𝑖+1
≡ 2 (𝑚𝑜𝑑 9) for an arbitrary but fixed number 𝑖 ≥ 1. Then 552𝑖+3

= 552𝑖+1 ∙52
≡

252
= 325 ≡ 55 ≡ 2 (𝑚𝑜𝑑 9). According to the principle of mathematical induction,55k

≡ 2 (mod 9) for any 

odd natural number 𝑘. ∎ 

Claim 3.7.For any natural number 𝑛 ≥ 2, 𝑑𝑟 5𝑛  = 2. 

Proof.Since 5𝑛 = 5 5𝑛−1  , and apparently 5𝑛−1 = 5𝑘  for some odd natural number 𝑘 if 𝑛 ≥ 2, this 

claim follows immediately from Claim 3.6.∎ 

 

As usual, we discuss the one-digit element of power towers of 6 first. Since 61 = 6, 𝑑𝑟 61  = 6. We 

then prove the rest cases. 

Claim 3.8.For any natural number 𝑛 ≥ 2, 𝑑𝑟 6𝑛  = 9. 

Proof.Since 6𝑘  is an even number, 6𝑛 = 6 6𝑛−1  ≡  −3  6𝑛−1  = 3 6𝑛−1   (𝑚𝑜𝑑 9) . Also, if 𝑛 ≥ 2 , 

6𝑛−1 > 2 . So 3 6𝑛−1  = 9𝑘  for some 𝑘 . In other words, 3 6𝑛−1  ≡ 0 (𝑚𝑜𝑑 9) , proving that 𝑑𝑟 6𝑛  = 9  by 

proposition 1.2. ∎ 

 

Because 7 ≡  −2  (𝑚𝑜𝑑 9), we will use a similar approach to handle power towers of 7 as we handle 

power towers of 2 . First case, 𝑑𝑟 71  = 𝑑𝑟 7 = 7 . Second case, 7 =2 77 ≡  −2 7 = −27 = −128 ≡

7 (𝑚𝑜𝑑 9). We then have the next claim. 

Claim 3.9.For any natural number 𝑘, 77𝑘
≡ 7 (𝑚𝑜𝑑 9). 

Proof.Since77𝑘
=  77 7𝑘−1

≡ 77𝑘−1
=  77 7𝑘−2

≡ 77𝑘−2
(𝑚𝑜𝑑 9), repeating the process we then have 

77𝑘
≡ 77𝑘−1

≡ 77𝑘−2
≡ ⋯ ≡ 77 ≡ 7 (𝑚𝑜𝑑 9).∎ 

Claim 3.10.For any natural number 𝑛 ≥ 3, 𝑑𝑟 7𝑛  = 7. 

Proof.Since 7𝑛 = 7 7𝑛−1  , and apparently 7𝑛−1 = 7𝑘  for some natural number 𝑘 if 𝑛 ≥ 3, this claim 

follows immediately from Claim 3.9. ∎ 

 

The power tower of 8case is not trivial, but is relatively easy. First, 𝑑𝑟 81  = 𝑑𝑟 8 = 8. For 8𝑛 when 

𝑛 ≥ 2, we have 8𝑛 ≡  −1  8𝑛−1  = 1 8𝑛−1  = 1 (𝑚𝑜𝑑 9) since 8𝑛−1  is even. 

 

The power tower of 9 is another trivial case for digital root. Since 9 ≡ 0 (𝑚𝑜𝑑 9), 9𝑛 = 9 9𝑛−1  ≡

0 9𝑛−1  = 0 (𝑚𝑜𝑑 9). Therefore 𝑑𝑟 9𝑛  = 9 for any natural number 𝑛. 

 

Summing all the above, we have the next main result. 

 

Result 3.11.The sequences of digital roots of power towers of integers have the following patterns: 

(i) 𝑑𝑟 1𝑛  = 1for any natural number 𝑛. 

(ii) 𝑑𝑟 21  = 2, 𝑑𝑟 22  = 4, and 𝑑𝑟 2𝑛  = 7 for any natural number 𝑛 ≥ 3. 

(iii) 𝑑𝑟 31  = 3, and 𝑑𝑟 3𝑛  = 9 for any natural number 𝑛 ≥ 2. 

(iv) 𝑑𝑟 4𝑛  = 4for any natural number 𝑛. 

(v) 𝑑𝑟 51  = 5, and 𝑑𝑟 5𝑛  = 2 for any natural number 𝑛 ≥ 2. 
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(vi) 𝑑𝑟 61  = 6, and 𝑑𝑟 6𝑛  = 9 for any natural number 𝑛 ≥ 2. 

(vii) 𝑑𝑟 7𝑛  = 7for any natural number 𝑛. 

(viii) 𝑑𝑟 81  = 8, and 𝑑𝑟 8𝑛  = 1 for any natural number 𝑛 ≥ 2. 

(ix) 𝑑𝑟 9𝑛  = 9for any natural number 𝑛. 
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