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 Abstract: In this paper, we establish sufficient conditions for the oscillation of solutions of second order neutral 

delay dynamic equations  
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 on an arbitrary time scale 𝕋.  
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I. Introduction 
The theory of time scales was introduced by Hilger in his Ph.D. thesis [1] in 1988 in order to unify continuous and 

discrete analysis. Since then, many authors have considered the time scales theory and its usage in various aspects 

of applied mathematics, see [2-9] and the references cited therein. In particular, we refer to the books of Bohner 

and Peterson [3, 4] as detailed references for the time scales calculus.  

 

Using the theory of time scales helps to avoid proving results twice, once for differential equations and once for 

difference equations [3, 4]. A time scale𝕋 is a non empty closed subset of real numbers. In this theory, the so 

called dynamic equations unify the classical theories for differential and difference equations if this time scale is 

equal to the reals and to the integers, respevtively. Moreover, the new theory of dynamic equations is able to 

extend these classical cases to cases ’in between’, for example to the so-called q-difference equations, see [3, 4].  

 

During the last few years, there has been a growing interest in obtaining oscillation criteria for the neutral dynamic 

equations on time scales, see [5-9] and the references cited therein.  

 

This paper is concerned with the oscillation of the second order neutral delay dynamic equations of the form  
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We construct sufficient conditions for the oscillation of equation (1) for both cases  
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By a solution of (1) we mean a real-valued function x  which satisfies (1) and 0>}|:)({|sup
x

tttx   for any 

0
tt

x
 . Such a solution is said to be oscillatory if it has no constant sign eventually, and nonoscillatory otherwise. 

 

 

There are numerous numbers of oscillation criteria obtained for oscillation for neutral differential equations, i.e. 

when 𝕋=ℝ. These results have considered many different forms of equations with different conditions. 

Relatively, few oscillation results for dyanmic equations on an arbitrary time scale𝕋 are known. Moreover, 

considering more general forms of nonlinear dyanmic equations on an arbitrary time scale𝕋 is still a challenge.  

 

Several authors have considered the oscillatory behaviour of (1) and related forms. In particular, Agarwal et al. [2] 

obtained sufficient conditions for the oscillation of the second ordered nonlinear neutral delay dynamic equations  
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where 0>  is a quotient of odd positive integers,   and   are positive constants, )( tr  and )( tp  are 

real-valued positive functions defined on 𝕋 and the condition (2) holds. Saker [7] also provided an oscillation 

criteria for this equation considering the same assumption (2).   

 

Oscillation results of the second order neutral dynamic equations  

0=))()(]]))()()([()([ 
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were presented in Li et al. [6] considering the condition (2). Where 0>  is a quotient of odd positive integers 

with )( tr  and )( tp  are real-valued positive functions defined on𝕋.  

 

Thandapan and Piramanantham [8] established an extended oscillation criteria for the dynamic equations  
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where 1 , and 0>  are quotients of odd positive integers,   and   are positive constants. Both 

conditions (2) and (3) were considered.  

 

Zhang et al. [9] considered the oscillatory behaviour of delay dynamic equations  
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under the assumption (2). 

 

 

Yang et al. [10] and Zhang et al. [11] discussed oscillation of the second-order nonlinear neutral dynamic 

equations with distributed deviating arguments.  

 

The aim of this paper is to obtain new sufficient conditions for equation (1) to oscilate. Both cases (2) and (3) are 

considered. One of our results includs a result of Al-Hamouri and Zein [12] when 𝕋=ℝ. 

 

In this paper, we assume that the reader is familiar with the time scale calculus. For further reading we refer the 

reader to [3,4]. To prove our results, we will use the following lemma which is one form of chain rules on time 

scales.  

Lemma 1.1 [[3], Theorem 1.93 ] Assume that g : 𝕋→ ℝ is strictly increasing,  = g(𝕋) is a 

time scale and f :   → ℝ..  If  and g 
∆
 (t) exist for t ∈  then  

 

 ).())((=)))(((
~

tgtgftgf


 (4) 

 

II. The Main Result 
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 then every solution of (1) is oscillatory .  

Proof. Suppose to the contrary that )( tx  is a nonoscillatory solution of equation (1). Without loss of generality, 

we may assume that )( tx  is eventually positive (the proof is similar when )( tx  is eventually negative). That is, 

let 0>)( tx   , 0>))(( tx   , and 0>))(( tx  for 
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ttt  .  

 

Set  

 ))(()()(=)( txtptxtz   (6) 

By )(
6

A  we have  

 0.>)))((()))((( txKtxf    (7) 

Using (7) together with (6) and (1) we get  
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Integrating this inequality and using (2), we get  
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This contradicts the fact that )( tz  is eventually positive. Hence, 0>)( tz

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Now consider the term 
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By differentiating )( tw , taking into consideration (9) and the fact that 0>)( tw , we have the following  
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Using (8) in the last inequality we get that  
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 Integrating (11) and using the condition (5), we obtain  
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This contradicts the fact that )( tw  is positive and this completes the proof. □ 

 

 

In the next results besides conditions )(
1
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 then every solution of (1) is oscillatory or tends to zero eventually .  

 

 

Proof. Assume that )( tx  is a nonoscillatory solution of equation (1). Without loss of generality, assume that 
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By (6) we get that ))(()()(
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 where )( tQ  is defined as in Theorem 2.2, then every solution of (1) is oscillatory or tends to zero eventually .  

 

 

Proof. Assume that equation (1) has a non-oscillatory solution )( tx . Without loss of generality, we assume that 
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If (15) holds, by proceeding as in the proof of Theorem 2.2 we obtain (20) which reads  
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 Taking the limit as t  and by using (27), a contradiction with 0>)( tz  is obtained.  
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this completes the proof.          □ 

 

References 
[1]   S. Hilger, Ein Maβkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten,Ph.D. thesis, Universität Würzburg, 1988. 

[2]   R. Agarwal , D. O’Regan, and S. Saker,  Oscillation criteria for second-order nonlinear neutral delay dynamic equations, Journal 

of Mathematical Analysis and Applications, vol. 300, no. 1, pp. 203-217, 2004. 
[3]   M. Bohner and A. Peterson,   Dynamic Equations on Time Scales: An Introduction with Applications,Birkhäuser Boston, 

Massachusetts, 2001. 

[4]   M. Bohner and A. Peterson,   Advances in Dynamic Equations on Time Scales, Birkhäuser Boston, Massachusetts, 2003. 
[5]   C. Gao , T. Li, S. Tang, and E. Thandapani,   Oscillation theorems for second-Order neutral functional dynamic equations on time 

scales, Electronic Journal of differential Equations, vol. 2011, no. 101, 2011. 

[6]   T. Li , R. Agarwal, and M. Bohner,   Some oscillation results for second-order neutral dynamic equations, Hacettepe Journal of 
Mathematics and Statistics, vol. 41, no. 5, pp. 715-721, 2012. 

[7]   S. Saker,   Oscillation of second-order nonlinear neutral delay dynamic equations on time scales,  Journal of of Computational 
and Apllied Mathematics, vol. 187, no. 2, pp. 123-141, 2006. 

[8]   E. Thandapani and V. Piramanantham,  Oscillation criteria for second order nonlinear neutral dynamic equations on time scales, 

Tamkang Journal of Mathematics, vol. 43, pp. 109-122, 2012. 
 



Oscillation results for second order… 

 www.ijmsi.org                                   8 | Page 

[9]   C. Zhang , R. Agarwal, M. Bohner, and T. Li,   New oscillation results for second-order neutral delay dynamic equations, 

Advances in difference equations, vol. 2012, 2012. 
[10]   Q. Yang, B. Jia, and Y. Xu,  Nonlinear oscillation of second-order neutral dynamic equations with distributed delay,Mathematical 

Methods in the Applied Sciences ,vol. 39, pp. 202–213, 2016. 

[11]   C. Zhang, R. Agarwal, M. Bohner, T. Li,   Oscillation of second-order nonlinear neutral dynamic equations with noncanonical 
operators, Bulletin of the Malaysian Mathematical Sciences Society, vol. 38, pp. 761-778, 2015. 

[12]   R. Al-Hamouri and A. Zein,   Oscillation criteria for certain even order neutral delay differential equations, International Journal 

of Differential Equations, vol. 2014, Article ID 437278, 2014. 
[13]   R. Al-Hamouri and A. Zein,   Oscillation results of higher order nonlinear neutral delay differential equations, Electronic Journal 

of Qualitative Theory of Differential Equations, 2014, No. 19, 1-7, 2014. 

 

 

 


