
International Journal of Mathematics and Statistics Invention (IJMSI) 

E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 

www.ijmsi.org Volume 4 Issue 4 || April. 2016 || PP-4101-05 

www.ijmsi.org                                                              1 | Page 

Gamma and inverse Gaussian frailty models: A comparative 

study 
 

Samia A. Adham, Amani A. AlAhmadi 
(Department of Statistics/ Faculty of Science/ King Abdulaziz University/ Saudi Arabia) 

 

ABSTRACT:Frailty models have become very popular during the last three decades and their applications 

are numerous. The main goal of this manuscript is to compare two frailty models (gamma frailty model and 

inverse Gaussian frailty model) each of which has a log-logistic distribution to be its baseline hazard function. 

A real data set is applied for the two considered frailty models in order to deal with models comparison. It has 

been concluded that the gamma frailty model is the best model fits this data set. Then the inverse Gaussian 

frailty model, which provides a better fit of the considered data set than the Cox’s model.  
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I. INTRODUCTION 
In applications of survival analysis, usually only a few covariates such as age, sex, severity of disease or 

laboratory data are known. It is known that there are many other factors that can influence survival, including 

health status, life style, smoking, occupation and genetic risk factors. In many applications, the population 

under study cannot be assumed to be homogeneous but must be considered as a heterogeneous. A popular 

regression model for the analysis of survival data is the Cox proportional hazards regression model. It allows 

testing for differences in survival times of two or more groups. 

The frailty approach is a statistical modeling concept which aims to account for heterogeneity, caused 

by unmeasured covariates. The frailty model is a random effect model, where the random effect (the frailty) 

has a multiplicative effect on the baseline hazard function. This random effect explains the dependence in the 

frailty models. The term frailty was first suggested by [1] in the context of mortality studies. [2]suggested a 

random effects model in order to account for the unobserved heterogeneity due to unobserved covariates and 

introduced the model to the literature of economics and the model is called the mixed proportional hazards 

model. [3][4] and [5] considered distributions for the frailty model to find the best model. [6]used frailty model 

to explain the deviant behavior of mortality rates at advanced ages.  

There are many applications of the gamma frailty model. [7]studied the expulsion of intrauterine 

contraceptive devices. [8]studied recidivism among criminals using gamma-Weibull model. [9]used the 

gamma frailty model to check the proportional hazards assumptions in his study of malignant melanoma.  A 

formal of the goodness-of-fit tests for the gamma frailties was constructed by [10]. They also construct a new 

class of frailty models that extend the gamma frailty model by using certain polynomial expansions that are 

orthogonal with respect to the gamma density. For that extended family, they obtained an explicit expression 

for the marginal likelihood of the data. The order selection test is based on finding the best fitting model in 

such a series of expanded models. A bootstrap was used to obtain p-values for the tests. Simulations and data 

examples illustrated the test’s performance. [11]considered gamma distribution as frailty distribution and the 

log-logistic distribution as baseline distribution for bivariate survival times. Because this distribution   has the 

advantage of having simple algebraic expressions for its survivor and hazard functions and a closed form for 

its distribution function. [12]studied the case of severe acute malnutrition (SAM) in developing countries. 

Then, they used exponential, Weibull and log-logistic as baseline hazard functions and the gamma as well as 

inverse Gaussian for the frailty distributions and then based on AIC criteria, all models were compared for 

their performance. 

 In this manuscript the analysis of the right censored survival data are considered. A real data example 

is applied for illustration. Section (2) concerns with maximum likelihood approach to the shared frailty 

models. Reconstitution data set: Reconstitution of blood–milk barrier after mastitis is presented in (3), in 

details. Finally, Section (4) discusses some important conclusions. 

 

II. LIKELIHOOD APPROACH TO SHARED FRAILTY MODELS 
In this section, the shared frailty model, which we consider in this manuscript, is explained. Then the 

likelihood function according for the right censored data is presented. gamma frailty and the inverse 

Gaussian frailty modelsSuppose that we have a data set of 𝑛 individuals from some population and 

𝑖 = 1,2, … , 𝐶 subgroups or clusters. Each subgroup consists of 𝑛𝑖 ≥ 1 individuals. The individuals in 
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each subgroup have dependent event times due to unobserved frailty 𝑢𝑖 . This frailty term may represent 

aggregate effect of common genes or shared environmental effect on survival of members of a given 

family, such as siblings, husband and wives. The goal is to estimate the frailty variance, 𝜃. The variance 

of the frailty distribution is used to determine the degree of heterogeneity in the study population. The 

frailty model is given as 

 

𝑕𝑖𝑗  𝑡|𝑢, 𝛽, 𝑍 = 𝑕𝜊 𝑡 𝑢𝑖𝑒
𝛽𝑍𝑖𝑗 , 𝑢 > 0. (𝛽, 𝑍 ∈ 𝑅)    (1) 

 

where𝑕𝜊(𝑡) is a common baseline hazard function, 𝛽is a vector of unknown regression coefficients and, for 

 𝑖 = 1,2, … , 𝐶 and 𝑗 = 1, 2, 𝑍𝑖𝑗 is a vector of the observable covariates. The frailties 𝑢𝑖are unobserved (random) 

common risk factor shared by all subjects in cluster 𝑖 assumed to be identically and independently distributed 

random variables with a common density function 𝑓(𝑈, 𝜃), where 𝜃is the parameter of the frailty distribution.  

The value of the frailty 𝑢𝑖  is common to all individuals in the cluster. In the literature, different frailty 

distributions have been proposed, such as gamma distribution, inverse Gaussian distribution, positive stable 

distribution, power variance function distribution, compound Poisson distribution and lognormal distribution. 

A more detailed presentation of the shared frailty models can be found in [13]. 

 

The likelihood function for right censored survival data is given by 

𝐿 =    1 − 𝐺𝑗  𝑡  𝑓𝑗  𝑡  
𝛿𝑗

  1 − 𝐹𝑗  𝑡  𝑔𝑗  𝑡  
1−𝛿𝑗

 ,𝑛
𝑗 =1 (2) 

where𝛿𝑗  is the censoring indicator, 𝑔 and 𝐺 are the density function and the cumulative distribution 

function of the censoring time, respectively; and𝑓 and 𝐹 are, respectively, the density function and the 

cumulative distribution function of the event time. 

The distribution of censoring times in the likelihood function can be ignored because it does not depend 

on the parameters of interest related to the survival function. Therefore, assuming right censoring, the 

likelihood function given by (2) can be rewritten as 

𝐿 =  (𝑓𝑗  𝑡 )𝛿𝑗 (𝑆𝑗 (𝑡))1−𝛿𝑗  ,𝑛
𝑗 =1          (3) 

where 𝑆𝑗  𝑡 = 1 − 𝐹𝑗  𝑡 is the survival function of the event time. Considering the shared frailty model 

presented above, the likelihood function for the 𝑗𝑡𝑕  subject in the 𝑖𝑡𝑕  subgroup is given by 

𝐿𝑖 =   𝑓𝑖𝑗  𝑡  
𝛿𝑖𝑗

(𝑆𝑖𝑗 (𝑡))1−𝛿𝑖𝑗  .
𝑛𝑖
𝑗 =1    (4) 

Since𝑕𝑖𝑗  𝑡 =
𝑓𝑖𝑗  𝑡 

𝑆𝑖𝑗  𝑡 
, then the likelihood function in (4) reduces to 

𝐿𝑖 =   𝑕𝑖𝑗  𝑡  
𝛿𝑖𝑗

𝑆𝑖𝑗  𝑡 .
𝑛𝑖
𝑗 =1 (5) 

The conditional likelihood function for the 𝑖𝑡𝑕  subgroup is then given by 

𝐿𝑖 𝜓, 𝛽|𝑢𝑖 =  (𝑕𝜊 𝑡 𝑢𝑖𝑒
𝛽𝑍𝑖𝑗 )𝛿𝑖𝑗

𝑛 𝑖

𝑗 =1

𝑒𝐻𝜊 𝑡 𝑢 𝑖𝑒
𝛽𝑍𝑖𝑗

, 

where,𝜓  is a vector of parameters of the baseline hazard function. It follows that, the marginal 

likelihood function for the 𝑖th
 subgroup is 

𝐿𝑖 𝜓, 𝜃, 𝛽  =   (𝑕𝜊 𝑡 𝑢𝑖𝑒
𝛽𝑍𝑖𝑗 )𝛿𝑖𝑗

∞

0

𝑛𝑖

𝑗=1

𝑒𝐻𝜊 𝑡 𝑢𝑖𝑒
𝛽𝑍𝑖𝑗

𝑔𝑘 𝑢𝑖 𝑑𝑢 

where 𝑔𝑘(𝑢𝑖)  is the probability density function of the frailty 𝑢𝑖 , 𝑘 = 1,2, 𝑖 = 1,2, … , 𝐶. For 𝑘 = 1,2, the 

probability density functions of frailties in the gamma frailty model and the inverse Gaussian frailty model are, 

respectively, given by  
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𝑔1 𝑢𝑖 =
𝑢𝑖

1
𝜃
−1

exp ⁡(−
𝑢𝑖
𝜃

 )

Γ(
1

𝜃
)𝜃

1
𝜃

and  𝑔2 𝑢𝑖 =  
1

2𝜋𝜃
 

1

2
𝑢𝑖

−
3

2𝑒
−

 𝑢 𝑖−1 
2

2𝑢𝑖𝜃 , (𝑢𝑖 , 𝜃 > 0). 

Where 𝑢𝑖 > 1indicates that individuals in group𝑖 are frail, whereas 𝑢𝑖 < 1 indicates that individuals are strong 

and have lower risk. The log-logistic hazard function and cumulative hazards functions with parameters 

𝜓 =  𝛼, 𝜅 are, respectively, given by 

𝑕𝑜 𝑡 =
exp ⁡(𝛼)𝜅𝑡𝜅−1

1+exp ⁡(𝛼)𝑡𝜅
and 𝐻𝑜 𝑡 = 𝑙𝑛  

exp ⁡(𝛼)𝜅𝑡𝜅−1

1+exp ⁡(𝛼)𝑡𝜅
 . 

Hence, the marginal log likelihood function for the gamma frailty with the log-logistic baseline hazard 

function is 

𝑙 𝜓, 𝜃, 𝛽 =   𝑑𝑖 log 𝜃 − log  Γ  
1

𝜃
  + log Γ  

1

𝜃
+ 𝑑𝑖  −  

1

𝜃
+ 𝑑𝑖 log⁡ 1 +   𝜃 ln⁡ 1 + exp⁡(𝛼)𝑡𝜅    𝑒𝛽𝑍𝑖𝑗

𝑛𝑖

𝑗=1

 

𝐺

𝑖=1

+  𝛿𝑖𝑗  𝛽𝑍𝑖𝑗 + log 
exp⁡(𝛼)𝜅𝑡𝜅−1

1 + exp⁡(𝛼)𝑡𝜅
  

𝑛𝑖

𝑗=1

  

And the marginal log likelihood function for the inverse Gaussian frailty model with the log-logistic 

baseline hazard function is 

𝑙 𝜓, 𝜃, 𝛽 =  

 
 
 
 
𝛿𝑖𝑗 log  

exp 𝛼 𝜅𝑡𝜅−1

1 + exp 𝛼 𝑡𝜅
 −

1

2
log  2 ln 1 + exp 𝛼 𝑡𝜅  

𝑛𝑖

𝑗=1

+ 𝜃 +
1

2
log θ 

𝐺

𝑖=1

−  𝜃  2 ln 1 + exp 𝛼 𝑡𝜅  

𝑛 𝑖

𝑗=1

+ 𝜃 

1

2

       +  2 ln 1 + exp 𝛼 𝑡𝜅  

𝑛𝑖

𝑗=1

+ 𝜃 

1

2

  

By maximizing the log likelihood function for each of the two frailty models proposed above, one can 

obtain the maximum likelihood estimates for the parameters𝜓, 𝜃and 𝛽 , see [13]and [14]. 

III. NUMERICAL ILLUSTRATION 
In this sectionwe applied a real data set to compare the Cox proportional hazards model with its 

extensions, the gamma frailty model and the inverse Gaussian frailty model, each of which has the log-

logistic distribution as a baseline hazard function. The comparisons between the Cox proportional 

hazard model and the considered gamma and inverse Gaussian frailty models are based on the Akaike 

Information Criteria (AIC) and the Bayesian Information Criteria (BIC). The effect of the considered 

frailty on the coefficients of the treatment effects is examined. The real right censored data set, called 

Reconstitution data set: Reconstitution of blood–milk barrier after mastitis, is applied for the required 

comparisons. (Source of the data set: http://www.vetstat.ugent.be/research/frailty/datasets/) 

In order to perform the required computations, the statistical package R is used. This study 

assumes two covariates Drug and heifer with coefficients 𝛽1and 𝛽2 , respectively. However, the two 

treatment times (active compound and placebo) for each cow is assumed independent.Then, the frailty 

modelcan be written as:    

𝑕𝑖𝑗  𝑡 = 𝑕° 𝑡 𝑢𝑖 exp 𝛽1𝑑𝑟𝑢𝑔 + 𝛽2𝑕𝑒𝑖𝑓𝑒𝑟𝑠 . 

Hence,thegamma and the inverse Gaussian frailty models with the log-logistic hazard function are 

applied to this data setin order to compare the effects of these two frailty models. In addition, the Cox’s 

model is also applied to this data set to compare it with the considered two frailty models.  

The maximum likelihood estimate of the parameters of the gamma and the inverse Gaussian frailty 

models and the Cox’s modelare computed. Furthermore, the comparison of the gamma and the invers Gaussian 

frailty modelsare considered according to the AIC and BIC. 

 

 

 

http://www.vetstat.ugent.be/research/frailty/datasets/
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Table 1: Parameters estimates 

parameter Gamma  Inverse Gaussian Cox 

𝜃 (𝑆𝐸) 0.307 (0.151)           0.347(0.229)           _____ 

𝛽1  (𝑆𝐸)(p-value)  0.453(0.172) (0.009) 0.454 (0.173) (0.009)  0.223(0.1

65) 

𝛽2 𝑆𝐸 (p-value) 0.378(0.231) (0.102) 0.336 (0.210) (0.109)    0.340(0.1

45) 

AIC 729.882 729.907 738.068 

BIC 743.075 743.1 744.481 

 

Table (1) provides the maximum likelihood estimates of the parameter 𝜃  and the regression 

parameters𝛽1 and 𝛽2 of the gamma frailtyand inverse Gaussian frailty models the with log-logistic baseline 

hazard function. In the case of not including frailty (Cox’s model), it is clear that the regression coefficients 

(𝛽1, 𝛽2) of the effect of the two covariate heifer and Drug are biased down. Whereas, for the gamma and the 

invers Gaussian frailty models, the regression estimates and their standard errors (SE) increase, which is 

predictable because the frailty variable 𝑢𝑖  is included in the model. The p-value of theregression coefficients 

(𝛽1, 𝛽2)of drug and heifer are 0.009 and 0.102, respectively; which indicates that 𝛽1is significant while 𝛽2 is 

not significant for the gamma frailty and the same results are founded for the invers Gaussian frailty.    

It is clear that from Table (1) the parameter 𝜃 of the gamma frailty is less than the parameter 𝜃ofthe  

invers Gaussian frailty, which indicates that including gamma frailty gives a better fit than the invers Gaussian 

frailty. The estimate of the variance of frailty term 𝜃 equal 0.307 and 0.347 for the gamma and the invers 

Gaussian frailties,  respectively. The p-value of𝜃 equal 0.005 and 0.004, respectively, for the gamma and 

theinvers Gaussian frailty models. That means that the heterogeneity parameter 𝜃 is significant in the two 

considered frailty models.  

The AIC and BIC value are computed for the gamma frailty and the inverse Gaussian frailty models 

with the log-logistic baseline hazard function and  for the Cox’s model. The smallest AIC and BIC values 

suggest the model that gives better fit for the data than other models. One can see from Table (1), that the 

gamma frailty model gives the best fit to this data set then the invers Gaussian frailty model is better than 

Cox’s model.  

 
Figure 1: The hazard functions for invers Gaussian frailty and gammafrailty with thelog-logistic 

baseline hazard function. 
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The hazard functions for bothgamma and inverse Gaussian frailty models are increasing and then decreasing 

and this is expected. It is clear from Fig.(1) that the two curves of the hazard functions of the gamma frailty 

model and the invers Gaussian frailty model are compatible. 

The estimated values of the parameters of the log-logistic baseline hazard functions are given in Table (2). 

Table 2: The value of the parameter estimate of the log-logistic baseline hazard function 

parameter gamma frailty invers Gaussian frailty 

𝛼 −1.293 −1.152 

𝜅 1.349 1.367 

 

For the log-logistic baseline hazard function, it is known that,thenegative sign of the parameter𝛼 

indicates that the hazard function is increasing and then decreasing. 

IV. CONCLUSIONS 
 This study compares the gamma and the inverse Gaussian frailty models when assuming the log-

logistic distribution as their baseline hazard function. The maximum likelihood estimation method is 

considered to estimate the parameters of the considered models in order to compare them through 

estimation and testing the significance of the parameters of the models under consideration. A real data 

set called Reconstitutiondata set is applied to compare the two frailty models. The AIC and BIC were 

computed to assess the considered frailty models which of them gives the best fit to this data set. It has 

been found that the gamma frailty model is the best model that fits this data set among the other two 

models. Then, the invers Gaussian frailty model fits the databetter than the Cox’s model. Furthermore, it 

has been found that, the heterogeneity parameter 𝜃 is significant in both gamma and inverse Gaussian 

frailty models.  
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