On a Generalized βR – Birecurrent Affinely Connected Space

Fahmi Yaseen Abdo Qasem and Wafa'a Hadi Ali Hadi

Dep. of Math. , Faculty of Edu. of Aden, Univ. of Aden, Khormaksar , Aden, Yemen

Abstract: In the present paper, we introduced a Finsler space whose Cartan's third curvature tensor R_{jkh}^{i} satisfies the generalized βR –birecurrence property which posses the properties of affinely connected space will be characterized by

 $\mathcal{B}_m \mathcal{B}_n R^i_{jkh} = a_{mn} R^i_{jkh} + b_{mn} \left(\delta^i_k g_{jh} - \delta^i_h g_{jk} \right),$

where a_{mn} and b_{mn} are non-zero covariant tensors field of second order called recurrence tensors field, such space is called as a generalized βR –birecurrent affinely connected space. Ricci tensors H_{jk} and R_{jk} , the curvature vector H_k and the curvature scalars H and R of such space are non-vanishing. Some conditions have been pointed out which reduce a generalized βR –birecurrent affinely connected space F_n (n > 2) into Finsler space of scalar curvature.

Keywords: Finsler space, Generalized βR –birecurrent affinely connected space, , Finsler space of curvature scalar.

I. Introduction

H.S. Ruse[4] considered a three dimensional Riemannian space having the recurrent of curvature tensor and he called such space as *Riemannian space of recurrent curvature*. This idea was extended to n-dimensional Riemannian and non- Riemannian space by A.G. Walker [1],Y.C. Wong [9],Y.C. Wong and K. Yano [10] and others . S. Dikshit [8] introduced a Finsler space whose Berwald curvature tensor H_{jkh}^i satisfies the recurrence property in sense of Berwald, F.Y.A.Qasem and A.A.M.Saleem [2] discussed general Finsler space for the hv-curvature tensor U_{jkh}^i satisfies the birecurrence property with respect to Berwald's coefficient G_{jk}^i and they called it *UBR- Finsler space*. P.N.pandey, S.Saxena and A.Goswami [6] introduced a Finsler space whose Berwald curvature tensor H_{jkh}^i satisfies generalized the recurrence property in the sense of Berwald they called such space generalized *H*-recurrent Finsler space .F.Y.A.Qaasem and W.H.A.Hadi [3] introduced and studied generalized βR –birecurrentFinslerspace

An affinely connected space or Berwald space characterized by any one of the two equivalent conditions

b) $C_{iik \mid h} = 0$. a) $G_{ikh}^{i} = 0$ (1.1)and Also it has the following properties b) $\mathcal{B}_k g^{ij} = 0$. (1.2)a) $\mathcal{B}_k g_{ij} = 0$ and Berwald covariant derivative of y^i vanishes ,i.e. (1.3) $\mathcal{B}_k y^i = 0$. The vector y_i , its associatine y^i and the metric tensor g_{ii} given by a) $y_i y^i = F^2$ b) $g_{ij} = \dot{\partial}_i y_j = \dot{\partial}_j y_i$. (1.4)and The processes of Berwald's covariant differentiation and the partial differentiation commute according to $(\dot{\partial}_k \mathcal{B}_h - \mathcal{B}_k \dot{\partial}_h) T_i^i = T_i^r G_{khr}^i - T_r^i G_{khj}^r.$ (1.5)The tensor H_{ikh}^{i} satisfies the relation $H_{jkh}^{i} = \dot{\partial}_{j} H_{kh}^{i}.$ (1.6)The h(v) – torsion tensor H_{kh}^{i} satisfies a) $H_{kh}^i y^k \stackrel{kn}{=} H_h^i$ and b) $R_{jkh}^i y^j = H_{kh}^i$. (1.7)Also we have the following relations a) $H_{jk} = H_{jki}^{i}$, b) $H_{k} = H_{ki}^{i}$ and c) $H = \frac{1}{n-1} H_{i}^{i}$. (1.8)where H_{ik} and H are called H-Ricci tensor [5] and curvature scalar, respectively. Since the contraction of the indices doesn't effect the homogeneity in y^i , hence the tensors H_{rk} , H_r and the scalar H are homogeneous of degree zero, one and two in y^i , respectively. The above tensors are also connected by a) $H_{jk} y^j = H_k$, b) $H_{jk} = \dot{\partial}_j H_k$ and c) $H_k y^k = (n-1)H$. (1.9)

The necessary and sufficient condition for a Finsler space $F_n(n > 2)$ to be a Finsler space of curvature scalar is given by

(1.10) $H_h^i = F^2 R(\delta_h^i - \lfloor^i \lfloor_h),$

where H_h^i is the deviation of the curvature tensor H_{jkh}^i .

R – Ricci tensor R_{jk} of the curvature tensor R_{jkh}^{i} , the deviation tensor R_{h}^{i} and the curvature scalar R are given by

(1.11) a) $R_{jki}^{i} = R_{jk}$, b) $R_{jkh}^{i}g^{jk} = R_{h}^{i}$ and c) $g^{jk}R_{jk} = R$. 2.A Generalized βR –Birecurrent Affinely Connected Space

A Finsler space whose Cartan's third curvature tensor R_{jkh}^i satisfies the following generalized βR – recurrence condition

 $(2.1) \qquad \mathcal{B}_n R^i_{jkh} = \lambda_n R^i_{jkh} + \mu_n (\delta^i_k g_{jh} - \delta^i_h g_{jk}), R^i_{jkh} \neq 0,$

where λ_n and μ_n are non-zero covariant vectors field and called the *recurrence vectors field*, known as a generalized βR -recurrent space.

Differentiating (2.1) covariantly with respect to x^m in sense of Berwald and using (1.2a), we get

(2.2)
$$\mathcal{B}_m \mathcal{B}_n R^i_{jkh} = a_{mn} R^i_{jkh} + b_{mn} \left(\delta^i_k g_{jh} - \delta^i_h g_{jk} \right),$$

where $a_{mn} = \mathcal{B}_m \lambda_n + \lambda_n \lambda_m$ and $b_{mn} = \lambda_n \mu_m + \mathcal{B}_m \mu_n$ are non-zero covariant tensors field of second order. **Definition2.1.** A Finsler space whose Cartan's third curvature tensor R_{jkh}^i satisfies the condition (2.2) will be called *generalized* βR -birecurrent affinely connected space, we shall denote it $G\beta R - BR$ – affinely connected space.

Let us consider a $G\beta R - BR$ – affinely connected space.

Transvecting the condition (2.2) by y^j , using (1.3) and (1.7b), we get

(2.3) $\mathcal{B}_m \mathcal{B}_n H_{kh}^i = a_{mn} H_{kh}^i + b_{mn} \left(\delta_k^i y_h - \delta_h^i y_k \right).$

Further, transvecting (2.3) by y^k , using (1.3), (1.8a) and (1.4a), we get

(2.4)
$$\mathcal{B}_m \mathcal{B}_n H_h^i = a_{mn} H_h^i + b_{mn} \left(y^i y_h - \delta_h^i F^2 \right).$$

Thus, we conclude

Theorem2.1. In $G\beta R - BR$ – affinely connected space, Berwald covariant derivative of second order for the h(v) –torsion tensor H_{kh}^i and the deviation tensor H_h^i , given by the conditions (2.3) and (2.4), respectively.

Contracting the indices i and h in (2.3) and (2.4), separately and using (1.8b) and (1.8c), we get.

(2.5) $\mathcal{B}_m \mathcal{B}_n H_k = a_{mn} H_k + (1-n) b_{mn} y_k$ and

(2.6)
$$\mathcal{B}_m \mathcal{B}_n H = a_{mn} H - b_{mn} F^2$$
,
respectively.

The conditions (2.5) and (2.6), show that the curvature vector H_k and the curvature scalar H can't vanish, because the vanishing of any one of them would imply $b_{mn} = 0$, a contradiction. Thus, we conclude

Theorem2.2. In $G\beta R - BR$ – affinely connected space, the curvature vector H_k and the curvature scalar H are non-vanishing.

Further, transvecting the condition (2.2) by g^{jk} , using (1.2b) and (1.11b), we get

(2.7) $\mathcal{B}_m \mathcal{B}_n R_h^i = a_{mn} R_h^i .$

Thus, we conclude

Theorem2.3. In $G\beta R - BR$ – affinely connected space, the deviation tensor R_h^i behaves as birecurrent.

Contracting the indices i and h in the condition (2.2) and using (1.11a), we get

(2.8) $\mathcal{B}_m \mathcal{B}_n R_{jk} = a_{mn} R_{jk} + (1-n) b_{mn} g_{jk}.$

Transvecting the condition (2.8) by g^{jk} , using (1.2b) and (1.11c), we get

(2.9) $\mathcal{B}_m \mathcal{B}_n R = a_{mn} R + (1-n) b_{mn} .$

The conditions (2.8) and (2.9), show that the R-Ricci tensor R_{jk} and the curvature scalar R can't vanish, because the vanishing of any one of them would imply $b_{mn} = 0$, a contradiction. Thus, we conclude

Theorem 2.4. In $G\beta R - BR$ – affinely connected space, R –Ricci tensor R_{jk} and the curvature scalar R are non-vanishing.

Now, differentiating the condition (2.5) partially with respect to y^{j} and using (1.4b), we get

(2.10) $\dot{\partial}_{j} (\mathcal{B}_{m} \mathcal{B}_{n} H_{k}) = (\dot{\partial}_{j} a_{mn}) H_{k} + a_{mn} (\dot{\partial}_{j} H_{k}) + (1-n) (\dot{\partial}_{j} b_{mn}) y_{k} + (1-n) b_{mn} g_{jk}.$

Using the commutation formula exhibited by (1.5) for $(\mathcal{B}_n H_k)$ in (2.10) and using (1.9b) and (1.1), we get

(2.11) $\mathcal{B}_{m}\dot{\partial}_{j}(\mathcal{B}_{n}H_{k}) = (\dot{\partial}_{j}a_{mn})H_{k} + a_{mn}H_{jk} + (1-n)(\dot{\partial}_{j}b_{mn})y_{k} + (1-n)b_{mn}g_{jk}.$

Again applying the commutation formula exhibited by (1.5) for (H_k) in (2.11) and using (1.1), we get

(2.12) $\mathcal{B}_{m}\mathcal{B}_{n}H_{jk} = (\hat{\partial}_{j}a_{mn})H_{k} + a_{mn}H_{jk} + (1-n)(\hat{\partial}_{j}b_{mn})y_{k} + (1-n)b_{mn}g_{jk} .$ This shows that (2.13) $\mathcal{B}_{m}\mathcal{B}_{n}H_{jk} = a_{mn}H_{jk} + (1-n)b_{mn}g_{jk}$ if and only if (2.14) $(\hat{\partial}_{j}a_{mn})H_{k} + (1-n)(\hat{\partial}_{j}b_{mn})y_{k} = 0.$ Thus, we conclude **Theorem2.5.** In $G\beta R - BR$ – affinely connected space, H –Ricci tensor H_{jk} is non-vanishing if and only if (2.14) holds good.

Transvecting (2.12) by y^k , using (1.3), (1.9a), (1.9c), (1.4a), we get

(2.15) $\mathcal{B}_m \mathcal{B}_n H_j = (n-1) (\dot{\partial}_j a_{mn}) H + a_{mn} H_j + (1-n) (\dot{\partial}_j b_{mn}) F^2 + (1-n) b_{mn} y_j.$

Using the condition (2.7) in (2.15), we get

 $(2.16) \qquad -(\dot{\partial}_j a_{mn})H + (\dot{\partial}_j b_{mn})F^2 = 0$

which can be written as

(2.17)
$$\dot{\partial}_j b_{mn} = \frac{(\partial_j a_{mn})H}{F^2}$$

If the covariant tensor field a_{mn} is independent of y^i , (2.17) shows that the covariant tensor field b_{mn} is independent of y^i . Conversely, if the covariant tensor b_{mn} is independent of y^i , we get $H(\dot{\partial}_j a_{mn}) = 0$. In view theorem 2.2, the condition $H(\dot{\partial}_j a_{mn}) = 0$ implies $\dot{\partial}_j a_{mn} = 0$, i.e. the covariant tensor field a_{mn} is also independent of y^i . This leads to

Theorem2.6. In $G\beta R - BR$ – affinely connected space, the covariant tensor field b_{mn} is independent of the directional arguments.

Suppose the tensor a_{mn} is not independent of y^i and in view of (2.14) and (2.17), we get (2.18) $\dot{\partial}_j a_{mn} \left[H_k - \frac{(n-1)}{F^2} H y_k \right] = 0.$

Transvecting (2.18) by y^m , we get

(2.19)
$$(\dot{\partial}_j a_{mn}) y^m [H_k - \frac{(n-1)}{F^2} H y_k] = 0,$$

which implies

(2.20)
$$(\dot{\partial}_j a_n - a_{jn}) [H_k - \frac{(n-1)}{F^2} H y_k] = 0,$$

where $a_{mn} y^m = a_n$.

Equation (2.20) has at least one of the following conditions

(2.21) a)
$$a_{jn} = \dot{\partial}_j a_n$$
, b) $H_k = \frac{(n-1)}{F^2} H y_k$.

Thus, we conclude

Theorem2.7. In $G\beta R - BR$ – affinely connected space, which the covariant tensor field a_{mn} is not independent of the directional argument at least one of the conditions(2.21a) and (2.21b) hold provided the condition (2.13) holds.

Differentiating the condition (2.3) partially with respect to y^{j} , using (1.6) and (1.4b), we get

(2.22)
$$\hat{\partial}_j \left(\mathcal{B}_m \mathcal{B}_n H_{kh}^i \right) = \left(\hat{\partial}_j a_{mn} \right) H_{kh}^i + a_{mn} H_{jkh}^i + \left(\hat{\partial}_j b_{mn} \right) \left(\delta_k^i y_h - \delta_h^i y_k \right) \\ + b_{mn} \left(\delta_k^i g_{jh} - \delta_h^i g_{jk} \right) .$$

Using the commutation formula exhibited by (1.5) for $(\mathcal{B}_n H_{kh}^i)$ in (2.22) and using (1.1), we get

(2.23)
$$\mathcal{B}_{m}(\dot{\partial}_{j}\mathcal{B}_{n}H_{kh}^{i}) = (\dot{\partial}_{j}a_{mn})H_{kh}^{i} + a_{mn}H_{jkh}^{i} + (\dot{\partial}_{j}b_{mn})(\delta_{k}^{i}y_{h} - \delta_{h}^{i}y_{k}) + b_{mn}(\delta_{k}^{i}g_{jh} - \delta_{h}^{i}g_{jk}).$$

Again applying the commutation formula exhibited by (1.5) for (H_{kh}^i) in (2.23), using (1.6) and (1.1), we get (2.24) $\mathcal{B}_m \mathcal{B}_n H_{jkh}^i = (\dot{\partial}_j a_{mn}) H_{kh}^i + a_{mn} H_{jkh}^i + (\dot{\partial}_j b_{mn}) (\delta_k^i y_h - \delta_h^i y_k) + b_{mn} (\delta_k^i g_{jh} - \delta_h^i g_{jk}).$ This shows that

(2.25) $\mathcal{B}_m \mathcal{B}_n H^i_{jkh} = a_{mn} H^i_{jkh} + b_{mn} \left(\delta^i_k g_{jh} - \delta^i_h g_{jk} \right)$ if and only if

$$(2.26) \qquad (\dot{\partial}_j a_{mn}) H^i_{kh} + (\dot{\partial}_j b_{mn}) (\delta^i_k y_h - \delta^i_h y_k) = 0 .$$

Thus, we conclude

Theorem2.8. In $G\beta R - BR - affinely$ connected space, Berwald curvature tensor H_{jkh}^i is generalized β -birecurrent if and only if (2.26) holds.

Transvecting (2.26) by y^k , using (1.3), (1.7a) and (1.4a), we get

(2.27) $(\dot{\partial}_j a_{mn}) H_h^i - (\dot{\partial}_j b_{mn}) (\delta_h^i F^2 - y^i y_h) = 0$.

In view of (2.17) and (2.27), we get

(2.28) $\left(\partial_{i} a_{mn}\right)\left[H_{h}^{i}-H\left(\delta_{h}^{i}-\lfloor^{i} \rfloor_{h}\right)\right]=0.$

We have at least one of the following conditions

(2.29) a) $\dot{\partial}_j a_{mn} = 0$, b) H_h^i Putting $H = F^2 R$, $R \neq 0$, equation (2.29b) becomes b) $H_h^i = H(\delta_h^i - \lfloor^i \rfloor_h).$

 $H_h^i = F^2 R(\delta_h^i - \lfloor^i \rfloor_h).$ (2.30)

Therefore, the space is a Finsler space of scalar curvature.

Thus, we have

Theorem2.9. A $G\beta R - BR -$ affinely connected space, for (n > 2) is a Finsler space of scalar curvature provided $R \neq 0$ and the covariant tensor filed a_{mn} is not independent of the directional arguments.

References

- [1]. A.G. Walker: On Ruse's space of recurrent curvature, Proc. Lond Math. Soc., 52 ,(1950), 36-64.
- [2]. F.Y.A .Qasem and A.A.M.Saleem: On U- birecurrent Finsler space, Univ. Aden J. Nat. and Appl . Sc., Vol.14, No.3 ,(December 2010).
- [3]. F.Y.A .Qasem and W.H.A.Hadi: On a generalized βR –birecuurent Finsler space, American Scientific Research Journal for Engineering, Technology and Sciences, Vol.19, No.1, Jordan, (May 2016).
- [4]. H.S. Ruse: Three dimensional spaces of recurrent curvature, Proc. Lond. Math. Soc., 50, (1949), 438-446.
- [5]. P. N. Pandey: Some problems in Finsler spaces, D.Sc. Thesis, University of Allahabad, (India) ,(1993).
- [6]. P.N. Pandey, S. Saxena and A. Goswani: On a generalized H-recurrent space, Journal of International Academy of physical Science, Vol. 15, (2011), 201-211.
- R. Verma: Some transformations in Finsler spaces, Ph.D. Thesis, University of Allahabad, (India), (1991). [7].
- [8]. S. Dikshit: Certain types of recurrences in Finsler spaces, Ph.D. Thesis, University of Allahabad, (1992).
- Y.C. Wong : Linear connections with zero torsion and recurrent curvature, Trans .Amer. Math. Soc., 102, (1962), 471-506. [9].
- [10]. Y.C.Wong and K. Yano: Projectively flat spaces with recurrent curvature, Comment Math . Helv ., 35 ,(1961), 223 - 232 .