Matrix Product (Modulo-2) Of Cycle Graphs

Stephen John.B¹, S.Jency (St.)²

¹Associate Professor, Department of mathematics, Annai Velankanni College, Tholayavattam, Tamil Nadu, India.

²Department of mathematics, Annai Velankanni College, Tholayavattam, Tamil Nadu, India.

ABSTRACT: Let G be simple graph of order n. A(G) is the adjacency matrix of G of order $n \times n$. The matrix A(G) is said to graphical if all its diagonal entries should be zero. The graph \lceil is said to be the matrix product (mod-2) of G and \overline{G} if A(G) and $A(\overline{G})(mod-2)$ is graphical and \lceil is the realization of $A(G) A(\overline{G})(mod-2)$. In this paper, we are going to study the realization of the Cycle graph G and any k – regular subgraph of \overline{G} . Also some interesting characterizations and properties of the graphs for each the product of adjacency matrix under (mod-2) is graphical.

Keywords: Adjacency matrix, Matrix product, Graphical matrix, Graphical realization, Cycle.

I. INTRODUCTION

Let G = (V, E) be a simple graph. The order of G is the number of vertices of G. For any vertex $v \in V$ the open neighborhood of v is the set $N(v) = \{u \in V/uv \in E\}$ and the closed Neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighborhood of S is $N(S) = U_{v \in S} N(v)$ and the closed Neighborhood of S is $N[S] = N(S) \cup S$

A set $S \subseteq V$ is a dominating set if N(S) = V - S or equivalently, every vertex in V/S is adjacent to at least one vertex in S.

In this paper we considered the graph as connected simple and undirected. Let G be any graph its vertices are denoted by $\{v_1, v_2, ..., v_n\}$ two vertices v_i and v_j , $i \neq j$ are said to be adjacent to each other if there is an edge between them. An adjacency between the vertices v_i and v_j is denoted by $v_i \sim_G v_j$ and $v_i \neq_G v_j$ denotes that v_i is not adjacent with v_j in the graph G. The adjacency matrix of G is a Matrix $A(G) = (a_{ij}) \in M_n(R)$ in which $a_{ij} = 1$ if v_i and v_j are adjacent, and $a_{ij} = 0$ otherwise, given two graphs G and H have the same set of vertices $\{v_1, v_2, ..., v_n\}, G \cup H$ represents the union of graphs G and H having the same vertex set and two vertices are adjacent in $G \cup H$ if they are adjacent in at least one of G and H. Graphs G and H having the same set of vertices are said to be edge disjoint, if $u \sim_G v$ implies that $u \not\sim_H v$ equivalently, H is a subgraph of G and G is a sub graph of H.

II. MATRIX PRODUCT (MODULO-2) OF CYCLE GRAPHS

Definition : 2.1

A walk of a graph G is an alternating sequence of points and lines $v_0, x_1, v_1, x_2, v_2, ..., v_{n-1}, x_n, v_n$ beginning and ending with points such that each line x_i is incident with v_{i-1} and v_i . A walk in which all the Vertices are distinct is called a path. A path containing n vertices is denoted by P_n . A closed path is called a cycle. Generally C_n denoted a cycle with n vertices.

Definition : 2.2

Let G be a graph with n vertices, m edges, the incidence matrix A of G is an $n \times m$ matrix $A=(a_{ij})$, where n represents the number of rows correspond to the vertices and m represents the columns correspond to edges such that

$$(1, i) = \begin{cases} 1 & \text{if } v_i \text{ and } v_j \text{ are adjacent in } G \end{cases}$$

$$(a_{ij}) = \begin{cases} 1 & ij & ij & and \\ 0 & otherwis \\ 0 & otherwis \end{cases}$$

It is also called vertex-edge incidence matrix and is denoted by $\wedge(G)$. **Definition : 2.3**

A symmetric (0,1) – Matrix is said to be graphical if all its diagonal entries $a_{ij} = 0$ for an i = j.

If B is a graphical matrix such that B=A(G) for some graph G. Then we often say that G is the realization of graphical matrix B.

Definition : 2.4

Let us Consider any two graphs G and H having same set of vertices. A graph Γ is said to be the matrix product of G and H. If A(G) A(H) is graphical and Γ is the realization of A(G) A(H). We shall extend the above definition of matrix product of graphs when the matrix multiplications is considered over the integers modulo-2. **Definition : 2.5**

The graph Γ is said to be a matrix product (mod-2) of graphs G and \overline{G} if $A(G) A(\overline{G}) \pmod{2}$ is graphical and Γ is the realization of $A(G) A(\overline{G}) \pmod{2}$.

Definition : 2.6

Given graphs G and H on the same set of vertices $\{v_1, v_2, ..., v_n\}$, two vertices v_i and v_j $(i \neq j)$ are said to have a GH path if there exists a vertex v_k , different from v_i and v_j such that $v_i \sim_G v_k$ and $v_k \sim_H v_j$.

Definition : 2.7

A graph is a parity graph if for any two induced paths joining the same pair of vertices the path lengths have the same parity (odd or even).

\bar{G} , Lemma: 2.8

If G is a cycle graph with length 3, then \overline{G} is a null graph.

Lemma: 2.9

Let *G* be a cycle graph with length 4 and \overline{G} is a complement of *G*. Then $A(G)A(\overline{G}) = A(G)$.

Lemma: 2.10

If G is a cycle graph with length 4 then \overline{G} is a disconnected graph.

Lemma: 2.11

Let *G* be a cycle graph with length 5 and \overline{G} is a complement of *G*. The realization of $A(G)A(\overline{G}) = G \cup \overline{G}$. Lemma: 2.12

Let *G* be a cycle graph and \overline{G} is a complement of *G*. Then $A(G)A(\overline{G})$ is graphical. **Proof:**

Let $C_n = \{v_1, v_2, ..., v_n\} v_i$ is adjacent with v_{i-1} and v_{i+1} such that, $v_n = v_0$. Let (a_{ii}) is the adjacent matrix of G, and (b_{ii}) is the adjacent matrix of

$$(1 \ if \ j = i + 1 \ and \ j = i - 1)$$

Then,

each
$$(a_{ij}) = \begin{cases} 1 & ij \ j = i+1 & and \ j = i-1 \\ 0 & otherwise \end{cases}$$
 and
each $(b_{ij}) = \begin{cases} 1 & if \ j = i+1 & and \ j = i+1 \\ 0 & otherwise \end{cases}$

Therefore, $A(G)A(\overline{G}) = \{(C_{ij}) = 0 \text{ if } i = j; i = 1,2,...,n\}$ Hence all diagonal values are zero, so cycle graph is graphical. Hence the proof.

Lemma 2.13

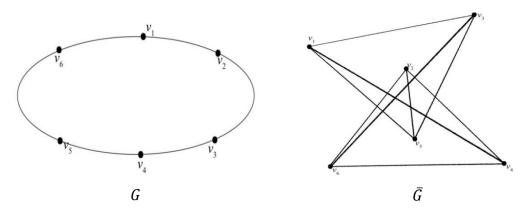
The $(i, j)^{th}$ $(i \neq j)$ entry of the matrix product A(G) A(H) is either o or 1 depending on whether the number of *GH* paths from v_i to v_j is even or odd, respectively.

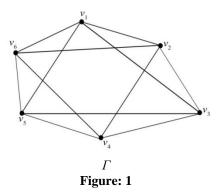
Example: 2.14

Consider a cycle graph G with length 6 and its complement \overline{G} and Γ as shown in figure 1 Note that

	/0	0	1	1	1	0
$A(G)A(\bar{G}) =$	0	0	0	1	1	$\begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$
	1	0	0	0	1	1
	1	1	0	0	0	1
	1	1	1	0	0	0 /
	/0	1	1	1	0	0/

Figure 3 is the graph realizing $A(G) A(\overline{G})$ is graphical





A cycle graph G with length 6 for which Γ is the graph realizing $A(G)A(\overline{G})$.

Theorem: 2.15

For any cycle graph G and its complement \overline{G} on the set of vertices are equivalent:

(i) The matrix product $A(G)A(\overline{G})$ is graphical.

(ii) For every *i* and *j*, $1 \le i, j \le n$, $deg_G v_j - deg_G v_j \equiv 0 \pmod{2}$.

(iii) The graph G is parity regular.

Proof:

Note that $(ii) \Leftrightarrow (iii)$ follows from the definition of parity regular graphs. Now, we shall prove $(i) \Leftrightarrow (ii)$. Let $(A(G))_{ij} = (a_{ij})$.

From the definitions of the complement of a graph and *GH* path, $H = \overline{G}$ implies that

 $deg_G v_i$ = Number of walks of length 2 from v_i in G + Number of $G\bar{G}$ paths

from v_i to $v_i + a_{ii}$ (1)

Similarly,

 $deg_G v_i$ =Number of walks of length 2 from v_i to v_i in G + Number of $G\bar{G}$ paths

from v_j to $v_i + a_{ij}$ (2)

for every distinct pair of vertices v_i and v_i .

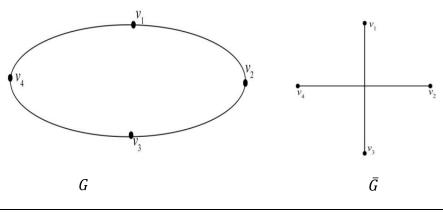
Since a $\bar{G}G$ path from v_j to v_i is a $\bar{G}G$ path from v_i to v_j , and comparing the right hand sides of (1) and (2), we get that $A(G)A(\bar{G})$ is graphical iff $deg_Gv_i \equiv deg_Gv_j \pmod{2}$. Hence the proof.

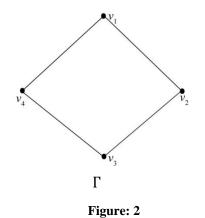
Remark 2.16

It is also possible for one to prove (1) \Leftrightarrow (2), by taking $A(\bar{G}) = J - A(G) - I$ in the matrix products $A(G)A(\bar{G})$ and $A(\bar{G})A(G)$, where J is the $n \times n$ matrix with all 1's and I is the $n \times n$ identity matrix. **Remark: 2.17**

For any two graphs G and H such that A(G)A(H) is graphical under ordinary matrix multiplication, it has been noted in equation (2) in Theorem 2.15 that any of G and H is connected implies that the other is regular.

When we consider matrix multiplication under modulo-2, we observe that the connected graphs G and \overline{G} . Shown in the figure 2 deviate from said property, where both the graphs are just parity regular or neither of them are regular. Note that





 Γ is the graph realizing $A(G)A(\overline{G})$, where either G or \overline{G} is regular.

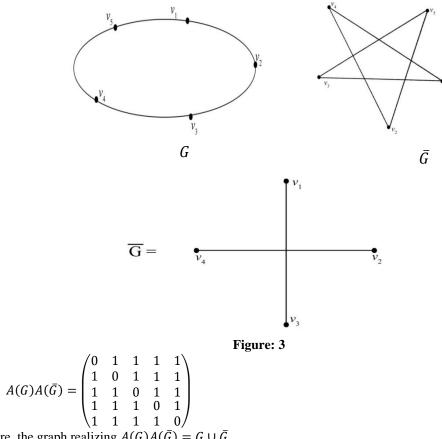
$$A(G)A(\bar{G}) = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Realizing the graph Γ as shown in figure 6.

The graph G for which $A(G)A(\overline{G}) = A(G)$. When we consider the matrix multiplication with reference to modulo - 2.

Example: 2.18

Let \bar{G} be a cycle graph with length 5 and \bar{G} is a complement of G. Then realization of A(G) and $A(\bar{G})$ is equal to $G \cup \overline{G}$.



Therefore, the graph realizing $A(G)A(\overline{G}) = G \cup \overline{G}$.

Theorem : 2.19

Let G be a graph and its complement \overline{G} defined on the set of vertices $\{v_1, v_2, \dots, v_n\}$. Then $A(G)A(\overline{G}) = A(G)$ iff $[A(G)]^2$ is either a null matrix or the matrix J with all entries equal to 1.

Proof :

Let, $A(G) = (a_{ij})$,

In theorem 2.15, taking $H = \overline{G}$, we get that, $A(G)A(\overline{G}) = A(G)$ The number of path in $G\overline{G}$ from v_i to v_j is (a_{ij}) . we have, $deg_G v_i \equiv$ number of walks of length 2 from v_i to v_j in G(mod-2) for $i \neq j$ (B) By theorem 2.15, G is a parity regular and therefore, $deg_G v_i - deg_G v_i \equiv 0 \pmod{2}$

we get that $(A(G))^2$ is either 0 or J.

Conversely, suppose that $(A(G))^2$ is either *O* or *J*. If $(A(G))^2 = 0$ we get that the degree of all the vertices in *G* are even and $(A(G))^2 = J$ would mean that degree of all the vertices are odd. By taking $A(\bar{G}) = J - A(G) - I$ = J + A(G) + I [since we know that the minus (-) is the same as the plus (+) under

modulo-2)]

Therefore, we get $A(G)A(\overline{G}) = A(G)(J + A(G) + I)$ = $A(G)J + (A(G))^2 + A(G)$

In each case, $(A(G))^2$ is *O* or *J*, we get that the right hand side of the above reduces to A(G). Which also characterizes the graphs *G* with property $A(G)A(\overline{G}) = A(G)$ in terms of characteristics of \overline{G} .

Theorem:2.20

The product A(G) A(H) is graphical if and only if the following statements are true.

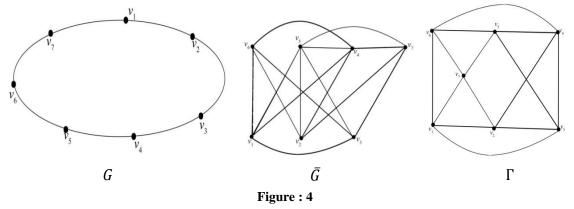
- (i) For every $(1 \le i \le n)$, there are even number of vertices v_k such that $v_i \sim_G v_k$ and $v_k \sim_H v_i$
- (ii) For each pair of vertices v_i and v_j $(i \neq j)$ the number of *GH* paths and *HG* paths from v_i to v_j have same parity.

Example: 2.21

Consider a cycle graph G with length 7 and its complement is shown in figure 4.

$$A(G)A(\bar{G}) = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

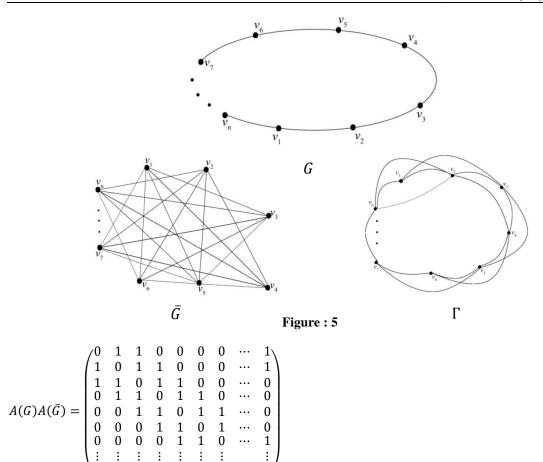
and the cocktail party graph shown in figure 4 is the graph realizing $A(G) A(\overline{G})$ is graphical.



 Γ is the graph realizing $A(G) A(\overline{G})$ where either G or \overline{G} is regular.

Remark: 2.22

For any two graphs *G* and *H* such that A(G) A(H) is graphical under ordinary matrix multiplication, it has been noted that equation (2) of theorem 2.15 any subgraph *H* of *G* is connected implies that the other is regular When we consider matrix multiplication under modulo-2, we observe that the connected graphs *G* and \overline{G} . Shown in the figure 5 deviate from said property where both the graphs are just parity regular or neither of them are regular



0 0 0 0 Realization of the graph Γ is shown in figure 5.

1

Corollary: 2.23

Consider a graph such that A(G) = A and $A(\overline{G}) = B$. Then the following statements are equivalent. (i)AB = A

(ii) $B^2 = I \text{ or } J - I$

(iii) \overline{G} is a graph with one of the following properties.

(a) Degree of each vertex is odd and the number of paths of length 2 between every pair of vertices is even.

(b) Degree of each vertex is even and the number of paths of length 2 between every pair of vertices is odd . **Proof:**

 $(i) \Rightarrow (ii)$ from the orem 2.19 we get AB = A implies A^2 is either a null matrix or J

1 ... 0

By taking A = J - B - I, we get that $A^2 = J^2 + B^2 + I^2$ further note that J^2 is either a null matrix or J itself depending on the number of vertices on which the graph defined is even or odd.

In both case, $A^2 = 0$ or J implies $B^2 = I$ or J - I. (*ii*) \Rightarrow (*i*) nothing that $J^2 = 0$ or J. itself by proper substitution for B^2 weget, $A^2 = J^2 + B^2 + I$

Is either a null matrix or *J*. So we obtain (1) from The orem 2.19.

As (iii) is graph theoretical interpretation of (ii), $(ii) \Leftrightarrow (iii)$ is trivial. Hence the Proof.

REFERENCES

- [1]. S.Akbari, F.Moazami and A.Mohammadian, Commutativity of the Adjacency Matrices of graphs, Discrete Mathematics, 309 (3) (2009), 595-600.
- J.A Bondy and U.S.R.Murthy. Graph Theory with applications. [2].
- [3]. F.Buckley and F.Harary, Distance in Graphs, Addison - Wesley publishing company, 1990.
- Indian J. Pure Appl. Math. December 2014, 851-860. (C) Indian National Science Academy. [4].
- [5]. K. Manjunatha Prasad, G.Sudhakara, H.S.Sujatha and M.Vinay, Matrix product of Graphs. In R.S.Bapat et al., (Editors), combinatorial Matrix Theory and Generalized Inverses of matrices, 41-56,2013.
- [6]. D.B.West Introduction to Graph theory Pearson Education (Singapore) Pte. Ltd. 2002.