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ABSTRACT: The fractional order PID controller is the generalization of classical PID controller, many 

Researchers interest in tuning FOPID controller here we use the Pareto Optimum technique to estimate the 

controller parameter and compare our result  with the classical model and with other Researchers result  .we 

used both mathematica package and matlab for tuning and simulation. 
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I. INTRODUCTION  
The fractional order controllers are being the aim of many engineering and scientists in the recent few 

decay [1-5]. The fractional order Proportional-Integral-Derivative (FOPID) was first introduced by Podlubny 

[2] and it consider as the generalization case of classical PID controllers. The Proportional-Integral-Derivative 

(PID) controllers are still the most widely controller in engineering and industrial for process control 

applications. If the mathematical model of the plant can be derived, then it is possible to apply various design 

techniques for determining parameters of the controller that will meet the transient and steady state 

specifications of the closed loop system. 

In the recent few decay due to the development of fractional calculus(FC) the modeling of engineering 

system can be appear in fractional order systems(FOS) that require much more than classical PID controller to 

meet both  transient and steady state specifications. 

There are many methods used to design FOPID, Deepyaman at. al.[4] using Particle Swarm 

Optimization Technique. Synthesis method which a modified root locus method for fractional-order systems 

and fractional order controllers was introduced in[8].A state-space design method based on feedback poles 

placement can be viewed in [10]. 

The aim of design PID controller is achieve high performance including low percentage overshoot and small 

settling time. The performance of PID controllers can be further improved by appropriate settings of fractional-I 

and fractional-D actions. 

 

 
Figure 1 Closed Loop System 

 
Consider the simple unity feedback control system shown in fig. 1 where R(s) is an input, G(s) is the transfer 

function of controlled system, Gc(S) is the transfer of the controller, E(s) is an error. U(s) is the controller's 

output, and C(s) is the system's output. 

 

II. FRACTIONAL ORDER CALCULUS [11-15] 
Fractional calculus (FC) is a generalization of integration and differentiation to non-integer orders. FC provides 

a more powerful tool for modeling the real live phenomena, and this is actually a natural result of the fact that in 

FC the integer orders are just special cases. 

Definition:  Let . The operator defined on by 
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(1) 

for , is called the Riemann-Liouville fractional integral operator of order  

Definition:   Let  and . The operator  defined as 

 
(2) 

 

 
for , is called the Riemann-Liouville differential operator of order .  

Definition: Let  and . The operator  defined by 

 

(3) 

 
for , is called the Caputo differential operator of order  

Definition: Let  . The operator  defined by 

 
 

(4) 

for , is called the Gr¨unwald-Letnikov fractional derivative of order  

 

From the Riemann-Liouville fractional integral, applying the Laplace transform of the convolution integral, 

Equations (1) and (2) will be: 

 

 

(5) 

 

 

 

(6) 

 

III. FRACTIONAL ORDER CONTROLLER [16-19] 
Before we introduced the Fractional Order Controller we introduce the fractional-order transfer function 

(FOTF) given by the following expression: 

 

(7) 

 

where is an arbitrary real number,  , is an 

arbitrary constant. 
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In the time domain, the FOTF corresponds to the n-term fractional –order differential equation (FDE) 

 
(8) 

 

where  is caputo’s fractional derivative of order  with respect to the variable  and with the starting 

point at  : 

 

The transfer function for conventional PID controller is 

 
(9) 

Transfer function for fractional order PID controller is 

 
(10) 

FO integro-differential equation 

 
(11) 

Where are the parameters of controller to be tuned, and  and  are the 

fractional integral and differential operator respectively, often defined by the Riemann-Liouville definition as 

the following: 

 
 

(12) 

 
(13) 

 

Table 1 Conroller Parameters 

 
Coefficient for the proportional term 

 Coefficient for the derivative term 

 Coefficient for the integral term 

 Fractional order for the derivative term 

 Fractional order for the integral term 

 

The fractional system is a system which could be better described by fractional order mathematical models, and 

its transfer function is at arbitrary real order instead of just integer order. 

Podlubny (1999) introduced [1] as a generalization of the classical PID controller, namely the PI
λ
D

μ
 controller 

or FOPID controller with an integrator of order λ and a differentiator of order μ. He also proves the better 

response of FOPID controller compered by PID controller special in case of FOS. 

 

 
Figure 2 : Fractional Order PID Controller 

 
The orders of integration and differentiation (λ, µ) must be positive real numbers, Taking  λ =1  and  

µ=1, we will have an integer order PID controller. Fig. 2 The classical PID controller has three parameters 

( )to be tuned, while the fractional order PID controller has five( ). 

The interest of this kind of controller is justified by a better flexibility, since it exhibits fractional 

powers (λ and μ) of the integral and derivative parts, respectively. Thus, five parameters can be tuned in this 

structure (λ, μ, Kp , Ki and Kd), that is, two more parameters than in the case of a conventional PID controller (λ 
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= 1 and μ = 1). The fractional orders λ and μ can be used to fulfill additional specifications of design or other 

interesting requirements for the controlled system. 

 

 
Figure 3 types of controllers 

From fig. 3 at the corners of square if λ =μ = 1, then it is classical PID controller.  If λ = 0 and μ = 1, then it is 

classical PD controller. If λ = 1 and μ = 0, then it is classical PI controller. If λ = μ = 0, then it is classical P 

controller. But any point inside the square donates a fractional order PID controller. 

 

IV. OPTIMIZATION OF CONTROLLER PARAMETERS 
The aims of most interested in FOPID controller is to estimate the controller parameters so many 

methods are done for example self - tuning and auto-tuning which introduced by Monje  CA at. al [20],rule base 

method [21-24] for which FOPID controller based on Ziegler Nichols-type rules, Analytical methods [25-27]. 

finally numerical treatment for optimization fractional order controllers has been introduced by various authors, 

based on the genetic algorithm[28-30],based on particle swarm optimization (PSO) technique[4 and 31-33]  has 

also been used for estimating  the controllers parameters,  A multi-objective optimization method  was designed 

by I. Pan and S. Das [34]  

As in the classical root locus method, based on our engineering requirements of the maximum peak 

overshoot Mp and rise time trise (or requirements of stability and damping levels) 

we find out the damping ratio ζ and the undamped natural frequency ω0. Using the values of ζ and ω0 we then 

find out the positions of the dominant poles of the closed loop system, 

 
(14) 

Let the closed loop transfer function of the system is: 

 

(15) 

 

Here G(s) = Gc(s).Gp(s) where Gc(s) is the transfer function of the controller to be designed. Gc(s) is of the 

form 

 
 

(16) 

Gp(s) is the transfer function of the process we want to control. 

If the required closed loop dominant poles are located at s1,2 =p1,2  =-x+ jy,- x –jy , then at s= p1 =-x+jy, we must 

have 

 (17) 

 

 

we get: 

 
 

(18) 

Assuming H(s) = 1, and Gp(s) being known, (18) can be arranged as: 

 

     

 
(19) 
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In this complex equation (19) we have five unknowns, namely {Kp, Ti, Td, λ, µ}. There are an infinite number 

of solution sets for s =p1 =-x+ jy . So the equation cannot be unambiguously solved. 

 

Pereto optimization  helps us the find the optimal solution set to the complex equation. 

Let: 

R=real part of the complex expression, 

I=imaginary part of the complex expression, 

P=phase ( =  ). 

 

We define  and minimize ‘f’ using the pareto optimization. Our goal is to find out the 

optimum solution set   for which  

 

The solution space is five-dimensional, the five dimensions being Kp, Ti, Td,  and . The personal and 

global bests are also five-dimensional. The limits on the position vectors of the particles (i.e. the controller 

parameters) are set by us as follows. As a practical assumption, we allow Kp to vary between 1 and 1000, Ti and 

Td between 1 and 500,  and  between 0 and 2. 

 

 

V. NUMERICAL EXAMPLES 
Consider the system of fractional order transfer function which need to be controlled as the following: 

 
(20) 

where  

and consider the FOPID transfer function as: 

 
 

(21) 

Using mathematica package and apply the pareto optimal algorithm with some constraints on the controler 

parameters (  to vary between 1 and 1000,  and  between 1 and 500,  and  between 0 and 2) we 

estimate the parameters values as (  ) 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

time

o
u
t
p
u
t

PID responce

FOPID responce

open loop responce

 
Figure 4: Comparison between PID and FOPID 
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Figure 5: Comparison between Our FOPID and POS Method 

 
Fig (4) show comparison between the output response of open loop transfer function (red line) and the 

classical PID controller (green line) and the FOPID controller using pareto optimization (blue line) and it is 

clearly how worest the open loop system with long time response and large peak over shot, but using PID 

controller all system requirements improved but still need more improvement, after using pareto optimal to 

estimate the controller parameter which make  the system response be better with less peak over shot ( we can 

claim that no peak over shot) and very small time response.  

Fig (5) show comparison between the output response of closed loop transfer function and fractional 

order PID by using Particle Swarm Optimization Technique  [4] (red line) and our method by using pareto 

optimization (blue line) 

VI. RESULTS AND CONCLUSION 
Her we used pareto method for numerical optimization of the FOPID which give an estimation of the controller 

parameter to meet the engineering specification needs, our result compared by classical PID and POS method  
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