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ABSTRACT: In this paper, we have defined a class of estimators of population median using the known 

information of population mean (𝑋 ) of the auxiliary variable making use of new parametric relationship for 

population median. We have derived the asymptotic expression for the MSE of any estimator of the proposed 

class and also its minimum value. As minimum MSE of all the estimators of defined class are same so to choose 

the optimum estimator of the class for the given population w.r.t.bias also, we have considered some important 

sub-classes of the generalized class. The optimum biases of the considered estimators are obtained (up to terms 

of order 𝑛−1) and compared with each other. Theoretical results are supported by an empirical study based on 

twelve populations to show the superiority of the suggested estimator over others. 
 

KEYWORDS:Auxiliary variable, SRSWOR, Bias, Mean square error, Median, Mode, Coefficient of skewness. 

 

I. INTRODUCTION 
In many situations, population median is regarded as a more appropriate measure of central tedency than 

arithmetic mean such as when we are interested in the positional average as a measure of central tendency which 

is not affected much by extreme observations i.e. for skewed distributions or we are dealing with attributes or 

qualitative characters which can not be measured quantitatively but still can be arranged in ascending or 

decending order of magnitude. When it is unknown then in above situations, one is interested to estimate it.  

Initially, estimation of population median without auxiliary variable was materialized, after that some authors 

including Kuk and Mak (1989), Mak and Kuk(1993) , Garcia and Cebrian (2001), Singh et al. (2006), Al and 

Cingi (2010), Singh and Solanki (2013) used the known auxiliary information in estimation of population 

median. 

Recently, Sharma et al (2016b) established the new parametric relationship for population median (𝑀𝑑)  as  

𝑀𝑑 = 𝑌 −
𝑘1

3

𝜇30

𝑆𝑦
2

 

where for the 𝑌- population 𝑘1 =
𝛽𝑦

𝜆𝑦
 is known constant. They proposed mean per unit estimator, the ratio-type 

and product-type estimators of population median 𝑀𝑑  under the different situations as 

 
𝑀 𝑑1

′ = 𝑦 −
𝑘 1𝑜𝑝𝑡

3

𝑚30

𝑠𝑦
2

,           

 
𝑀 𝑑2

′ = 𝑦 
𝑋 

𝑥 
−

𝑘 2𝑜𝑝𝑡

3

𝑚30

𝑠𝑦
2

𝑋 

𝑥 
 ,  

and 𝑀 𝑑3

′ = 𝑦 
𝑥 

𝑋 
−

𝑘 3𝑜𝑝𝑡

3

𝑚30

𝑠𝑦
2

𝑥 

𝑋 
  

where 𝑘 1𝑜𝑝𝑡  =
𝛽𝑦

𝜆𝑦
 , 𝑘 2𝑜𝑝𝑡  =

𝛽𝑦 𝐶𝑦 +𝛽1𝑦  𝐶𝑥
2−𝐶𝑦𝑥  +𝐵

𝐶𝑦  𝜆𝑦 +𝛽1𝑦
2 𝐶𝑥

2−2𝛽1𝑦𝐵 
 and 𝑘 3𝑜𝑝𝑡  =

𝛽𝑦 𝐶𝑦 +𝛽1𝑦  𝐶𝑥
2+𝐶𝑦𝑥  −𝐵

𝐶𝑦  𝜆𝑦 +𝛽1𝑦
2 𝐶𝑥

2+2𝛽1𝑦𝐵 
  are the conventional 

consistent estimators of the constants 𝑘1, 𝑘2 and 𝑘3. Here the estimator 𝑀 𝑑1

′ uses no information on auxiliary 

variable 𝑥 which is highly correlated with 𝑦, whereas 𝑀 𝑑2

′  and 𝑀 𝑑3

′  uses the known information of 𝑋 , which are 

of ratio-type and product-type estimators respectively.  

In the present paper, we propose a class of estimators of population median using the new parametric 

relationship for population median when the population mean (𝑋 )  of the auxiliary variable is known. 

Asymptotic expressions for the Bias and MSE of any estimator of the proposed class and also its minimum 

value are obtained. We also consider some important members of the proposed class and up to the first degree of 

approximation the minimum MSE’s of the considered estimators are same but biases are different. To have the 

rough idea about the optimum biases of the considered estimators and minmimum MSE of estimators of the 

class numerical illustration is given. 
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II. NOTATIONS AND EXPECTATIONS 
Suppose a simple random sample of size 𝑛 is drawn from a finite population of size 𝑁 without replacement and observations 

on both study variables 𝑦 and auxiliary variable 𝑥 are taken. Let the values of variable 𝑦 and 𝑥 be denoted by 𝑌𝑖  and 𝑋𝑖  

respectively on the 𝑖𝑡ℎ  unit of the population 𝑖 = 1,2 … 𝑁 and the corresponding small letters 𝑦𝑖  and 𝑥𝑖  denote the sample 

values. 

Taking,            

 𝑌 =
1

𝑁
 𝑌𝑖

𝑁

𝑖=1

 ,                                   𝑋 =
1

𝑁
 𝑋𝑖

𝑁

𝑖=1

  

 𝑆𝑦
2 =

1

𝑁 − 1
  𝑌𝑖 − 𝑌  2

𝑁

𝑖=1

,                 𝑆𝑥
2 =

1

𝑁 − 1
  𝑋𝑖 − 𝑋  2

𝑁

𝑖=1

  

 𝜇𝑟𝑠 =
1

𝑁
  𝑌𝑖 − 𝑌  𝑟

𝑁

𝑖=1

 𝑋𝑖 − 𝑋  𝑠 ,        𝜆𝑟𝑠 =
𝜇𝑟𝑠

𝜇20
𝑟 2 

𝜇02
𝑠 2 

  

 𝑚30 =
𝑛

 𝑛 − 1  𝑛 − 2 
  𝑦𝑖 − 𝑦  3

𝑛

𝑖=1

,   

Obviously 

𝜆11 = 𝜌𝑥𝑦 = 𝜌(Correlation between 𝑥 and 𝑦) 

𝜆30 = 𝛽1𝑦 (Coefficient of skewness of 𝑦) 

𝜆40 = 𝛽2𝑦 (Coefficient of kurtosis of 𝑦) 

 

Defining, 

 
𝛿0 =

𝑦 

𝑌 
− 1, 𝛿 =

𝑠𝑦
2

𝑆𝑦
2 − 1  

 
𝜖 =

𝑥 

𝑋 
− 1, 𝜂1 =

𝑚30

𝜇30
− 1  

For the sake of simplicity, assume that 𝑁 is large enough as compares to 𝑛 so that finite population correction (fpc) terms are 

ignored throughout. 

For the given SRSWOR, we have the following expectations, 

𝐸 𝛿0 = 𝐸 𝛿 = 𝐸 𝜖 = 0 𝐸 𝛿0
2 =

1

𝑛
𝐶𝑦

2 

𝐸 𝜖2 =
1

𝑛
𝐶𝑥

2 , 𝐸 𝛿0𝜖 =
1

𝑛
𝐶𝑦𝑥  

𝐸 𝜖𝛿 =
1

𝑛
𝜆21𝐶𝑥  𝐸 𝛿0𝛿 =

1

𝑛
𝜆30𝐶𝑦 =

1

𝑛
𝛽1𝑦𝐶𝑦  

and up to terms of order 𝑛−1 

 𝐸 𝜂1 = 0  

 𝐸 𝛿2 =
1

𝑛
 𝜆40 − 1 =

1

𝑛
 𝛽2𝑦 − 1 ,   

 𝐸 𝜂1
2 =

1

𝑛

 𝜆60 − 6𝜆40 − 𝜆30
2 + 9 

𝜆30
2 =

1

𝑛

 𝜆60 − 6𝛽2𝑦 − 𝛽1𝑦
2 + 9 

𝛽1𝑦
2 ,  

 𝐸 𝛿0𝜂1 =
1

𝑛

 𝜆40 − 3 

𝜆30
𝐶𝑦 =

1

𝑛

 𝛽2𝑦 − 3 

𝛽1𝑦
𝐶𝑦 ,  

 𝐸 𝛿𝜂1 =
1

𝑛

 𝜆50 − 4𝜆30 

𝜆30
=

1

𝑛

 𝜆50 − 4𝛽1𝑦 

𝛽1𝑦
 ,  

 
𝐸 𝜖𝜂1 =

1

𝑛

 𝜆31 − 3𝜌 

𝜆30
𝐶𝑥 =

1

𝑛

 𝜆31 − 3𝜌 

𝛽1𝑦
𝐶𝑥 . 

 

 

III. PROPOSED CLASS OF ESTIMATORS 

Sharma et al. (2016a) defined the class of estimators of population mode  𝑀𝑜  as 

𝑀 𝑜𝑔 = 𝑀 𝑜𝑡(𝑢) (3.1) 

where the optimum values of two unknown constants 𝑘 and 𝑡(1) were determined by minimizing the MSE’s up to terms of 

order 𝑛−1, the minimum MSE was obtained as 

𝑀𝑆𝐸𝑚𝑖𝑛 =
1

𝑛
𝑌 2𝐶𝑦

2  1 − 𝜌2 −
(𝐵𝑦𝜌 + 𝛽𝑦 )2

(𝜆𝑦 − 𝐵𝑦
2)

  
(3.2) 

where 

 𝜆𝑦 = 𝜆60 − 6𝛽𝑦 + 𝛽0𝑦  

 𝛽𝑦 = 𝛽2𝑦 − 𝛽1𝑦
2 − 3, 

 𝛽0𝑦 = 𝛽1𝑦
2 𝛽2𝑦 − 2𝛽1𝑦𝜆50 − 9, 

 𝐵𝑦 = 𝛽1𝑦𝜆21 − 𝜆31 + 3𝜌 
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If we define the wider class of estimators of population mode  𝑀𝑜  as 

𝑀 𝑜𝑔 = 𝑡(𝑀 𝑜 , 𝑢) (3.3) 

Two constants 𝑘 and 𝑡1 are involved in the class (3.3) and their optimum values determined by minimizing the MSE, up to 

terms of order 𝑛−1, are 

 
𝑘 =

 𝐵𝑦𝜌 + 𝛽𝑦 

 𝜆𝑦 − 𝐵𝑦
2 

 
(3.4) 

 
𝑡1 = −

𝑌 𝐶𝑦  𝐵𝑦𝛽𝑦 + 𝜌𝜆𝑦  

𝐶𝑥 𝜆𝑦 − 𝐵𝑦
2 

 
 

 

Up to terms of order 𝑛−1, the minimum MSE of the optimum estimator of class (3.3) is same as the minimum MSE of the 

optimum estimator of class (3.1) defined by Sharma et al. (2016a). 

We, here propose a generalized class of estimators of population median (𝑀𝑑 ) when 𝑋  is known, 

 𝑀 𝑑𝑔 = ℎ(𝑀 𝑑 , 𝑢) (3.5) 

where 𝑀 𝑑 = 𝑦 −
𝑘

3

𝑚30

𝑠𝑦
2  and 𝑘 is constant whose value is given by (3.4). Whatever be the sample chosen, let 𝑢 =

𝑥 

𝑋 
 assume 

values in a bounded closed convex subset 𝑅 of the two-dimensional real space. Let ℎ(𝑀 𝑑 , 𝑢) be a function of 𝑀 𝑑  and 𝑢 such 

that 

ℎ 𝑀𝑑 , 1 = 𝑀𝑑  

and such that it satisfies the following conditions: 

(i) The function ℎ(𝑀 𝑑 , 𝑢)  is continuous and bounded in 𝑅. 

(ii) The first and second order partial derivatives of ℎ(𝑀 𝑑 , 𝑢)  exist and are continuous and bounded in 𝑅. 

⇒ ℎ1 𝑀𝑑 , 1 = 1 

where ℎ1 𝑀𝑑 , 1  is the first order partial derivative of function ℎ(𝑀 𝑑 , 𝑢). 

 

Note that the estimators of population median  𝑀𝑑  defined by Sharma et al. (2016) are the members of the proposed class 

of estimators (3.5). 

 

To find the biases and 𝑀𝑆𝐸′𝑠 of estimators of class 𝑀 𝑑𝑔 , we expand the function ℎ(𝑀 𝑑 , 𝑢)   about the value (𝑀𝑑 , 1) in 

second-order Taylor’s series, writing it in terms of 𝛿0, 𝛿, 𝜖, 𝜂1and then taking the expectations given in section 2, up to  

terms of order𝑛−1, we get, 

𝐵𝑖𝑎𝑠 𝑀 𝑑𝑔  = 𝑂(𝑛−1) (3.6) 

𝑀𝑆𝐸 𝑀 𝑑𝑔 =
1

𝑛
 𝑌 2𝐶𝑦

2 + ℎ1
2𝐶𝑥

2 + 2ℎ1𝑌 𝐶𝑦𝑥 +
𝑘2

9
𝑌 2𝐶𝑦

2𝜆𝑦 −
2

3
𝑘𝑌 2𝐶𝑦

2𝛽𝑦 +
2

3
ℎ1𝑘𝑌 𝐶𝑦𝐶𝑥𝐵𝑦   (3.7) 

as 𝑘 is known constant, whose value is given by (3.4) above, so the only unknown constant here to find out is ℎ1  =

𝜕ℎ𝜕𝑢𝑢=1 whose value is determined by minimizing 𝑀𝑆𝐸(𝑀𝑑𝑔).  

To obtain the minimum value of 𝑀𝑆𝐸(𝑀 𝑑𝑔 ) we differentiate (3.7) w.r.t. ℎ1, then equating to zero, we get, 

ℎ1𝐶𝑥 + 𝑌 𝜌𝐶𝑦 +
𝑘

3
𝑌 𝐶𝑦𝐵𝑦 = 0 

 

Solving above equation by substitute the value of 𝑘𝑜𝑝𝑡  for ℎ1, we get  

ℎ1 = −
𝑌 𝐶𝑦 {3𝜌𝜆𝑦 − 2𝜌𝐵𝑦

2 + 𝛽𝑦𝐵𝑦 }

3𝐶𝑥{𝜆𝑦−𝐵𝑦
2}

 
 

Substituting the values of pair (𝑘1 , 𝑡 1 ) in (3.7), we get, 

𝑀𝑆𝐸𝑚𝑖𝑛  𝑀 𝑑𝑔 =
1

𝑛
𝑌 2𝐶𝑦

2{1 − 𝜌2 −
5(𝐵𝑦𝜌 + 𝛽𝑦 )2

9{𝜆𝑦 − 𝐵𝑦
2}

} 

 

From Srivastava and Jhajj (1983) results, here we can also say that the unknown population parameters in optimum values of 

constants will not create any problem for practical use of the proposed class 𝑀 𝑑𝑔 . We can construct the large number of 

estimators belonging to the proposed class 𝑀 𝑑𝑔 . Here it should be noted that the use of estimators of the proposed class 

𝑀 𝑑𝑔 require the optimum values of constants 𝑘  andℎ1 , which are further functions of unknown population parameter. 

However, if it is possible to guess accurately the values of such parameters either through past experience or through a pilot 

sample survey, then the values of optimum constants so obtained by using these guessed values of parameters are close 

enough to the optimum values of constants and the resulting estimators will be better than the convention estimators. Even if 

we replace the parameters in the constants 𝑘 and ℎ1 by their conventional consistent estimators then up to terms of order 

𝑛−1, the minimum 𝑀𝑆𝐸 𝑀 𝑑𝑔  remains the same. 

 

Remarks:   

(i.) Up to terms of order 𝑛−1, 

𝑀𝑆𝐸𝑚𝑖𝑛  𝑀 𝑑𝑔 < 𝑀𝑆𝐸 𝑌  𝑙𝑟  

iff 
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5 𝐵𝑦𝜌 + 𝛽𝑦 
2

9 𝜆𝑦 − 𝐵𝑦
2 

> 0 

 

(ii.) Special Case of Bivariate Normal Population 

Let (𝑌, 𝑋)~𝑁(𝜇𝑦 , 𝜇𝑥 , 𝜎𝑦
2, 𝜎𝑥

2, 𝜌), then we have 𝜆60 = 15, 𝜆40 = 3, 𝜆31 = 3𝜌, 𝜆22 = 1 + 2𝜌2,𝜆𝑟,𝑠 = 0 if 𝑟 + 𝑠 is odd. Also, 

𝑋~𝑁(𝜇𝑥 , 𝜎𝑥
2) and 𝑌~𝑁(𝜇𝑦 , 𝜎𝑦

2).  

 

Using these values, we get, 

 
𝑀𝑆𝐸𝑚𝑖𝑛  𝑀 𝑑𝑔 = 𝑀𝑆𝐸 𝑌  𝑙𝑟 =

1

𝑛
𝑆𝑦

2(1 − 𝜌2) 

 

IV. SOME IMPORTANT MEMBERS OF THE PROPOSED CLASS 
Any estimator, which satisfies the stated regularities conditions of the proposed class of estimators (3.5), is a member of the 

class. So we can construct a large number of estimators of 𝑀𝑑 . All the estimators of the class though have the same 

minimum MSE (up to terms of order 𝑛−1) but their biases are different. To choose the optimum estimator of the proposed 

class, we have to choose that estimator which has the minimum MSE as well as the minimum bias. Hence to choose the 

optimum estimator of the class, we take into consideration the following important sub-classes of the proposed generalized 

class (3.5) as 

 𝑀 𝑑𝑔
(1)

= 𝑀 𝑑 + 𝛼1 𝑢 − 1  (4.1) 

 𝑀 𝑑𝑔
(2)

= 𝑀 𝑑 exp 𝛼2𝑙𝑜𝑔𝑢  (4.2) 

 𝑀 𝑑𝑔
(3)

= 𝑀 𝑑 {1 + 𝛼3 𝑢 − 1 } (4.3) 

and 𝑀 𝑑𝑔
(4)

= 𝑀 𝑑 exp⁡{𝛼4 𝑢 − 1 } (4.4) 

 

Expanding above four estimators in a second order Taylor’s series and using the expectations given in section II, we obtain, 

 
𝐵𝑖𝑎𝑠  𝑀 𝑑𝑔

 1 
 =

1

𝑛

𝑘

3
𝑌 𝐶𝑦 𝜆50 − 𝛽1𝑦 𝛽2𝑦 + 3   

 

 
𝐵𝑖𝑎𝑠  𝑀 𝑑𝑔

 2 
 =

1

𝑛
 
𝑘

3
𝑌 𝐶𝑦 𝜆50 − 𝛽1𝑦 𝛽2𝑦 + 3  + 𝛼2𝑌 𝐶𝑦𝑥 +

𝑘

3
𝛼2𝑌 𝐶𝑦𝐶𝑥𝐵𝑦 −

1

2
𝛼2𝑀𝑑𝐶𝑥

2

+
1

2
𝛼2

2𝑀𝑑𝐶𝑥
2  

 

 
𝐵𝑖𝑎𝑠  𝑀 𝑑𝑔

 3 
 =

1

𝑛
 
𝑘

3
𝑌 𝐶𝑦 𝜆50 − 𝛽1𝑦 𝛽2𝑦 + 3  + 𝛼3𝑌 𝜌𝐶𝑥 +

𝑘

3
𝛼3𝑌 𝐶𝑥𝐵𝑦   

 

 
𝐵𝑖𝑎𝑠  𝑀 𝑑𝑔

 4 
 =

1

𝑛
 
𝑘

3
𝑌 𝐶𝑦 𝜆50 − 𝛽1𝑦 𝛽2𝑦 + 3  + 𝛼4𝑌 𝐶𝑦𝑥 +

𝑘

3
𝛼4𝑌 𝐶𝑦𝐶𝑥𝐵𝑦 +

1

2
𝛼4

2𝑀𝑑𝐶𝑥
2  

 

and 
𝑀𝑆𝐸  𝑀 𝑑𝑔

 1 
 =

1

𝑛
 𝑌 2𝐶𝑦

2 + 𝛼1
2𝐶𝑥

2 + 2𝛼1𝑌 𝐶𝑦𝑥 +
𝑘2

9
𝑌 2𝐶𝑦

2𝜆𝑦 −
2

3
𝑘𝑌 2𝐶𝑦

2𝛽𝑦 +
2

3
𝑘𝛼1𝑌 𝐶𝑦𝐶𝑥𝐵𝑦   

 

 
𝑀𝑆𝐸  𝑀 𝑑𝑔

 𝑖 
 =

1

𝑛
 𝑌 2𝐶𝑦

2 + 𝛼𝑖
2𝑀𝑑

2𝐶𝑥
2 + 2𝛼𝑖𝑀𝑑𝑌 𝐶𝑦𝑥 +

𝑘2

9
𝑌 2𝐶𝑦

2𝜆𝑦 −
2

3
𝑘𝑌 2𝐶𝑦

2𝛽𝑦

+
2

3
𝑘𝛼𝑖𝑀𝑑𝑌 𝐶𝑦𝐶𝑥𝐵𝑦  ; 𝑖 = 2,3,4. 

 

where𝑘 is known constant, whose value is given by (3.4) above and the only unknown constant here to find out is 𝛼𝑖 , 

𝑖 = 1,2,3,4, whose value is determined by minimizing the respective 𝑀𝑆𝐸(𝑀 𝑑𝑔
 𝑖 

). Then the MSE of 𝑀 𝑑𝑔
 𝑖 

, 𝑖 = 1,2,3,4 are 

minimised for 

 
𝛼1 = −

𝑌 𝐶𝑦 3𝜌𝜆𝑦 − 2𝜌𝐵𝑦
2 + 𝛽𝑦𝐵𝑦  

3𝐶𝑥 𝜆𝑦−𝐵𝑦
2 

,                     
 

And 
𝛼𝑖 = −

𝑌 𝐶𝑦 3𝜌𝜆𝑦 − 2𝜌𝐵𝑦
2 + 𝛽𝑦𝐵𝑦  

3𝑀𝑑𝐶𝑥 𝜆𝑦−𝐵𝑦
2 

; 𝑖 = 2,3,4. 
 

and the optimum biases and minimum MSE are given as, 

 
𝐵𝑖𝑎𝑠𝑜𝑝𝑡 (𝑀 𝑑𝑔

(1)
) =

1

𝑛

 𝐵𝑦𝜌 + 𝛽𝑦 

3(𝜆𝑦−𝐵𝑦
2)

𝑌 𝐶𝑦 𝜆50 − 𝛽1𝑦 𝛽2𝑦 + 3   
 

 
𝐵𝑖𝑎𝑠𝑜𝑝𝑡 (𝑀 𝑑𝑔

(2)
) =

1

𝑛

𝑌 𝐶𝑦

3(𝜆𝑦−𝐵𝑦
2)

  𝐵𝑦𝜌 + 𝛽𝑦  𝜆50 − 𝛽1𝑦 𝛽2𝑦 + 3  

−
𝑌 𝐶𝑦 3𝜌𝜆𝑦 − 2𝜌𝐵𝑦

2 + 𝛽𝑦𝐵𝑦 
2

6𝑀𝑑(𝜆𝑦−𝐵𝑦
2)

+
𝐶𝑥

2
 3𝜌𝜆𝑦 − 2𝜌𝐵𝑦

2 + 𝛽𝑦𝐵𝑦   
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𝐵𝑖𝑎𝑠𝑜𝑝𝑡 (𝑀 𝑑𝑔

(3)
) =

1

𝑛

𝑌 𝐶𝑦

3(𝜆𝑦−𝐵𝑦
2)

  𝐵𝑦𝜌 + 𝛽𝑦  𝜆50 − 𝛽1𝑦 𝛽2𝑦 + 3  

−
𝑌 𝐶𝑦 3𝜌𝜆𝑦 − 2𝜌𝐵𝑦

2 + 𝛽𝑦𝐵𝑦 
2

3𝑀𝑑(𝜆𝑦−𝐵𝑦
2)

  

 

 
𝐵𝑖𝑎𝑠𝑜𝑝𝑡 (𝑀 𝑑𝑔

(4)
) =

1

𝑛

𝑌 𝐶𝑦

3(𝜆𝑦−𝐵𝑦
2)

  𝐵𝑦𝜌 + 𝛽𝑦  𝜆50 − 𝛽1𝑦 𝛽2𝑦 + 3  

−
𝑌 𝐶𝑦 3𝜌𝜆𝑦 − 2𝜌𝐵𝑦

2 + 𝛽𝑦𝐵𝑦 
2

6𝑀𝑑(𝜆𝑦−𝐵𝑦
2)

  

 

and 

𝑀𝑆𝐸𝑚𝑖𝑛  𝑀 𝑑𝑔
 𝑖 

 =
1

𝑛
𝑌 2𝐶𝑦

2  1 − 𝜌2 −
5 𝐵𝑦𝜌 + 𝛽𝑦 

2

9 𝜆𝑦 − 𝐵𝑦
2 

 ; 𝑖 = 1,2,3,4. 
 

 

V. COMPARISION W.R.T. BIASES 
Theorem 1. Up to terms of order 𝑛−1, 

 𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(1)

  <  𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(2)

   

iff 

 𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(1)

  
2

<  𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(2)

  
2
 

when 

𝐺 >
6𝐶𝑥 𝜆𝑦 − 𝐵𝑦

2 

𝐿1
2  2𝐿2 +

𝐶𝑥𝐿1

2
  𝑜𝑟 𝐺 <

3𝐶𝑥 𝜆𝑦 − 𝐵𝑦
2 

𝐿1
 

where 𝐿1 = 3𝜌𝜆𝑦 − 2𝜌𝐵𝑦
2 + 𝛽𝑦𝐵𝑦 , 𝐿2 =  𝐵𝑦𝜌 + 𝛽𝑦  𝜆50 − 𝛽1𝑦 𝛽2𝑦 + 3   and 𝐺 =

𝑌 𝐶𝑦

𝑀𝑑
. 

 

Theorem 2. Up to terms of order 𝑛−1, 

 𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(1)

  <  𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(3)

   

iff 

 𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(1)

  
2

<  𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(3)

  
2
 

when  

𝐺 >
6𝐿2 𝜆𝑦 − 𝐵𝑦

2 

𝐿1
2 . 

 

Theorem 3. Up to terms of order 𝑛−1, 

 𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(1)

  <  𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(4)

   

iff 

 𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(1)

  
2

<  𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(4)

  
2
 

when 

𝐺 >
12𝐿2 𝜆𝑦 − 𝐵𝑦

2 

𝐿1
2 . 

 

Theorem 4. Up to terms of order 𝑛−1, 

 𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(2)

  <  𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(3)

   

iff 

 𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(2)

  
2

<  𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(3)

  
2
 

when  

𝐺 >
2 𝜆𝑦 − 𝐵𝑦

2 

𝐿1
2   𝐿2 −

𝐶𝑥𝐿1

2
 +  𝐿2

2 −
𝐶𝑥

2𝐿1
2

2
− 4𝐶𝑥𝐿1𝐿2  

𝑜𝑟 𝐺 <
2 𝜆𝑦 − 𝐵𝑦

2 

𝐿1
2   𝐿2 −

𝐶𝑥𝐿1

2
 −  𝐿2

2 −
𝐶𝑥

2𝐿1
2

2
− 4𝐶𝑥𝐿1𝐿2 . 

 

Theorem 5. Up to terms of order 𝑛−1, 

 𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(2)

  <  𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(4)

   

iff 
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 𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(2)

  
2

<  𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(4)

  
2
 

when  

𝐺 >
6 𝜆𝑦 − 𝐵𝑦

2 

𝐿1
2  

𝐶𝑥𝐿1

4
+ 𝐿2 . 

 

Theorem 6. Up to terms of order 𝑛−1, 

 𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(3)

  <  𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(4)

   

iff 

 𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(3)

  
2

<  𝐵𝑖𝑎𝑠𝑜𝑝𝑡  𝑀 𝑑𝑔
(4)

  
2
 

when 

𝐺 <
4𝐿2 𝜆𝑦 − 𝐵𝑦

2 

𝐿1
2 . 

 

VI. NUMERICAL ILLUSTRATIONS 
To illustrate the result numerically, we have made computations for 12 populations taken from literature by using Microsoft 

Excel 2010. 

The source of the populations, the nature of the variables, the values of 𝑌 , 𝑘1,𝜇20 , 𝛽1𝑦  and 𝜌 are listed in Table 1.  

The efficiencies of proposed estimators are given in Table 2. 

The absolute optimum biases of considered four important sub-classes of the proposed generalized class are given in Table 

3. In Table 4, we compare optimum estimator of proposed class with all 22 existing estimators of different technique that are 

listed by Singh and Solanki (2013), 3 existing estimators defined by Sharma et al. (2016b) and the linear regression estimator 

of meadian 𝑀𝑑 . 

Table 1: Description of populations 

Sr. 

No. 

Source 
𝒚 𝒙 𝒀  𝒌𝟏 𝝁𝟐𝟎 𝜷𝟏𝒚 𝝆 

1 Murthy (1967), 

p.91 (1-35) 

Cultivated 

area (acres) 

Holding size 

(acres) 
2.3650 -0.2217 1.5818 0.9119 0.3685 

2 Murthy (1967), 

p.398 

No. of 

absentees 

No. of 

workers 
9.6512 0.0442 42.1341 1.5575 0.6608 

3 Murthy (1967), 

p.399 

Area under 

wheat in 

1964 

Cultivated 

area in 1961 199.4412 -0.0220 
21900.893

6 
1.1295 0.9043 

4 Chakravarty et 

al.(1967), 

p-183 

Length(cm) 

measured by 

1st person 

Length(cm) 

measured by 

2nd person 

4.9737 -0.0437 0.1346 -0.0546 0.9317 

5 Chakravarty et 

al.(1967), 

p-207 

Weight 

(kg) of male 

Height 

(cm) of male 29.2625 -0.0240 6.5836 0.3670 0.7709 

6 Chakravarty et 

al.(1967), 

p-207 

Weight (kg) 

of female 

Height (cm) 

of female 28.5313 -0.3896 1.8109 0.1099 0.2306 

7 Chakravarty et 

al.(1967), 

p-185 (1-35) 

Weight (lb) 

of Kayastha 

males 

Stature (cm) 

of Kayastha 

males 

82.2000 -0.2012 191.7029 0.0439 0.8578 

8 Chakravarty et 

al.(1967), 

p-185 (1-76) 

Weight (lb) 

of Kayastha 

males  

Stature (cm) 

of Kayastha 

males  

89.4211 0.0516 278.4806 0.6068 0.4361 

9 Chochran 

(1999), p-325 

Total 

number of 

persons 

Average 

persons per 

room 

101.1000 -0.3015 214.6900 0.3248 0.6515 

10 Maddala&Lahi

ri (1992), 

p-316 

Consumptio

n per capital 

of Lamb 

Deflated 

prices of 

Lamb 

4.5188 -0.0281 0.2103 -0.6578 -0.7517 

11 Guajrati 

(2004), 

p-27,(1-50) 

Price per 

dozen(cent) 

in 1990 

Egg 

production 

in 1991 

(million) 

78.2880 0.0111 445.3787 0.9959 -0.3096 

12 http://content.h

ccfl.edu 

Highway 

fuel 

efficiency of 

vehicles (in 

miles) 

Weightof 

vehicles (in 

1000 lbs.) 30.6154 -0.2045 15.6213 0.0549 -0.8978 

http://content.hccfl.edu/
http://content.hccfl.edu/
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Table 2: 𝒏−𝟏 × 𝑴𝑺𝑬′𝒔 of 𝑴 𝒅𝟏
, 𝑴 𝒅𝟐

, 𝑴 𝒅𝟑
, 𝒀  𝑹,𝒀  𝑷, 𝑴 𝒅𝒈 and 𝑴 𝒍𝒓  up to terms of order 𝒏−𝟏 

   𝒏−𝟏 ∗ 𝑴𝑺𝑬′𝒔 of     

Pop. No. 𝑴 𝒅𝟏
 𝑴 𝒅𝟐

 𝑴 𝒅𝟑
 𝒀  𝑹 𝒀  𝑷 𝑴 𝒅𝒈 𝑴 𝒍𝒓 

1 1.4201 7.2895 14.9915 - - 1.2843 1.3670 

2 40.3890 22.9990 90.9751 23.7459 - 22.9937 23.7380 

3 20935.5069 4172.6821 66661.3002 4286.448

3 

- 3971.8559 3992.7274 

4 0.1201 0.0201 0.4947 0.0201 - 0.0175 0.0178 

5 6.5145 3.9238 10.5213 3.9590 - 2.6658 2.6713 

6 1.5012 1.8675 2.6333 - - 1.4462 1.7146 

7 142.0275 79.4387 237.1650 105.5227 - 45.2976 50.6533 

8 270.2905 228.2034 539.9383 237.2253 - 216.9131 225.5076 

9 176.6954 125.6235 554.3948 135.1725 - 106.0736 123.5609 

10 0.2005 0.6691 0.1023 - 0.1023 0.0912 0.0915 

11 445.3506 10052.185

1 

7317.9041 - - 402.4026 402.7018 

12 10.6760 59.4203 6.4059 - 6.7647 2.7241 3.0308 

 

Table 3: 𝒏−𝟏 ×  𝑩𝒊𝒂𝒔𝒐𝒑𝒕  of 𝑴 𝒅𝒈
(𝒊)

, 𝒊 = 𝟏, 𝟐, 𝟑, 𝟒, up to terms of order 𝒏−𝟏 

Pop. No.  𝑩𝒊𝒂𝒔𝒐𝒑𝒕(𝑴 𝟏𝒅)   𝑩𝒊𝒂𝒔𝒐𝒑𝒕(𝑴 𝟐𝒅)   𝑩𝒊𝒂𝒔𝒐𝒑𝒕(𝑴 𝟑𝒅)   𝑩𝒊𝒂𝒔𝒐𝒑𝒕(𝑴 𝟒𝒅)  

1 0.0355 0.2832 0.0485 0.0065 

2 0.7019 0.5424 1.5368 0.4174 

3 1.0521 24.3762 125.6609 63.3565 

4 0.0008 0.0025 0.0223 0.0107 

5 0.0042 0.0425 0.1376 0.0709 

6 0.0383 0.0355 0.0406 0.0395 

7 0.0131 0.4398 1.4981 0.7425 

8 1.8005 1.9346 1.1957 1.4981 

9 0.4794 0.3064 1.2792 0.8793 

10   0.0044 0.0253 0.0210 0.0083 

11 0.2729 3.9549 0.2967 0.0119 

12 0.0172 0.4966 0.3830 0.2001 

 

Table 4: MSE and Relative Efficiencies of Population Median Class 

 MSE  Relative Efficiency 

Estimators Pop.I Pop.II Pop.I Pop.II 

𝑉(𝑀 𝑦) 565443.57 565443.57 100.00 100.00 

𝑀𝑆𝐸(𝑀 𝑟) 988372.76 536149.50 57.21 105.46 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑀 𝑑)     

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑀 𝑦
(𝐺)

) 552636.13 508766.02 102.32 111.14 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑀 𝑖)     

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑡4) 630993.68 478781.74 89.61 118.10 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑡5) 499412.60 499412.60 113.22 113.22 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑡6) 630979.49 478784.18 89.61 118.10 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑡7) 630367.71 478806.00 89.70 118.09 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑡8) 522345.11 488388.99 108.25 115.78 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑡9) 630993.63 478781.75 89.61 118.10 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑡10) 489754.69 493940.28 115.45 114.48 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑡11) 630993.67 478781.74 89.61 118.10 

𝑀𝑆𝐸𝑚𝑖𝑛 {𝑀 𝑑
(1)

} 489569.06 495484.97 115.50 114.12 

𝑀𝑆𝐸𝑚𝑖𝑛 {𝑀 𝑑
(2)

} 489395.24 454675.78 115.54 124.36 

𝑀𝑆𝐸𝑚𝑖𝑛 {𝑀 𝑑
(3)

} 3220.01 51355.17 17560.30 1101.05 

𝑀𝑆𝐸𝑚𝑖𝑛 {𝑀 𝑑1
(4)

} 480458.29 454616.16 117.69 124.38 

𝑀𝑆𝐸𝑚𝑖𝑛 {𝑀 𝑑2
(4)

} 489395.24 454675.78 115.54 124.36 

𝑀𝑆𝐸𝑚𝑖𝑛 {𝑀 𝑑3
(4)

} 480459.82 454616.17 117.69 124.38 

𝑀𝑆𝐸𝑚𝑖𝑛 {𝑀 𝑑4
(4)

} 480525.30 454616.32 117.67 124.38 

𝑀𝑆𝐸𝑚𝑖𝑛 {𝑀 𝑑5
(4)

} 487375.11 454660.89 116.02 124.37 
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𝑀𝑆𝐸𝑚𝑖𝑛 {𝑀 𝑑6
(4)

} 480458.30 454616.16 117.69 124.38 

𝑀𝑆𝐸𝑚𝑖𝑛 {𝑀 𝑑7
(4)

} 489260.97 454672.34 115.57 124.36 

𝑀𝑆𝐸𝑚𝑖𝑛 {𝑀 𝑑8
(4)

} 480458.29 454616.16 117.69 124.38 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑀 𝑑1
) 2155601.93 2155601.93 26.23 26.23 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑀 𝑑2
) 187364.86 241764.01 301.79 233.88 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑀 𝑑3
) 6887379.49 7187700.83 8.21 7.87 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑌 𝑙𝑟 ) 168489.40 183861.68 335.60 307.54 

𝑴𝑺𝑬𝒎𝒊𝒏 𝑴 𝒅𝒈  164833.35 178024.51 343.04 317.62 
 

From table 2, in which we compared the estimators of similar type, we observe that, upto the terms of order 

𝑛−1 ,𝑀𝑆𝐸𝑚𝑖𝑛  𝑀 𝑑𝑔   is less than 𝑀𝑆𝐸𝑚𝑖𝑛 (𝑀 𝑑1
), 𝑀𝑆𝐸𝑚𝑖𝑛 (𝑀 𝑑2

), 𝑀𝑆𝐸𝑚𝑖𝑛 (𝑀 𝑑3
), 𝑀𝑆𝐸(𝑌  𝑅), 𝑀𝑆𝐸(𝑌  𝑃)and even smaller than 

𝑀𝑆𝐸𝑚𝑖𝑛 (𝑌 𝑙𝑟 ), which are very interesting results. 

From table 3, it is clearly seen that among all the four important types of  estimators, the bias of first sub-class of estimators 

 𝑀 𝑑𝑔
(1)

 , which is of regression type, is less in most of the populations. 

From table 4, we can see that the efficiency of the proposed optimum estimator of class 𝑀 𝑑𝑔 is very much high as compare to 

estimators of different technique. 

 

VII. CONCLUTION 
In this study, when 𝑋  is known then we have proposed the generalized class of estimators of population median 

which includes the estimators defined by Sharma et al. (2016). The lower bound for MSE for the class of estimators has been 

obtained. To choose optimum estimators w.r.t. MSE and bias, important types of sub-classes of proposed generalized class 

are considered. Their optimum biases have been obtained and compared with each other.  

Empirically we have shown that the sub-class of regression-type estimators 𝑀 𝑑𝑔
(1)

= 𝑀 𝑑 + 𝛼1 𝑢 − 1  are optimum 

estimators of population median w.r.t. bias and MSE, as well as very simple as compared to the exisiting ones. 
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