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ABSTRACT: In this paper we study two popular properties exhibited by many complex networks, viz., small-

world and scale-free. The object of this paper is twofold. First, we present a brief historical account on small-

world and scale-free properties of complex network. Second, we adopt complex network approach to study few 

network datasets in connection with small-world and scale-free properties. 
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I. INTRODUCTION 
In nature many system can be described by models of complex networks, which are structures consisting of 

nodes or vertices connected by links or edges. For example, the Internet, which is a complex network of routers 

or domains, the World Wide Web (WWW), which is a complex network of websites, the brain, which is a 

complex network of neurons, the power grids, airport network etc. Food webs and metabolic pathways can also 

be represented by networks, as can the relationships among words in a language. 

In 1950, two mathematicians, Erdös and Rényi (ER) made described a network with complex topology 

by a random graph [12]. Their work had laid a foundation of the random network theory. Although intuition 

clearly indicates that many real-life complex networks are neither completely regular nor completely random, 

the ER random graph model was the only sensible and rigorous approach that dominated researchers‟ thinking 

about complex networks for nearly half of a century, due essentially to the absence of super-computational 

power and detailed topological information about very large-scale real-world networks. In the past few years, 

the computerization of data acquisition and the availability of high computing power have led to the emergence 

of huge databases on various real networks of complex topology. 

In 1998, in order to describe the transition from a regular lattice to a random graph, Watts and Strogatz 

(WS) introduced the concept of small-world network. In their 1998 seminal paper, Watts and Strogatz described 

networks, which are “highly clustered, like regular lattices, yet have small characteristic path lengths, like 

random graphs” [3]. A small-world network is a network which has clustering similar to a regular lattice and 

path length similar to a random network. It is notable that the small-world phenomenon is indeed very common. 

An interesting popular manifestation of the “small-world effect” is the so-called “six degrees of separation” 

principle, suggested by a social psychologist, Milgram, in 1960s [17]. Although this point remains controversial, 

the small-world pattern has been shown to be ubiquitous in many real networks. A prominent common feature 

of the ER random graph and the WS small-world model is that the degree distribution of a network peaks at an 

average value and decays exponentially. Such networks are called “exponential networks” or “homogeneous 

networks,” because each node has about the same number of link connections.  

Another path-breaking contribution in the field of complex networks is the scale-free networks by 

Barabási and Albert [13,14]. The degree distributions of scale-free networks follow a power-law regime that is 

independent of the network scale. The field has received growing attention from scientists and researchers 

working in many walks of life. Scale-free networks seem to match real-world applications much better than ER 

network models. Differing from an exponential network, a scale-free network is inhomogeneous in nature; most 

nodes have very few link connections and yet a few nodes have many connections. The discovery of the small-

world effect and scale-free feature of complex networks has led to dramatic advances in complex networks 

theory in the past few years. In 2001 Strogatz has imparted about complex networks through his paper 

“Exploring complex networks” [16], Barabási and Albert in 2002 through the paper “Statistical mechanics of 

complex networks” [15], and Wang in 2002 through his paper “Complex networks: topology, dynamics and 

synchronization” [21]. 
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The rest of the paper is organized as follows: in the next section we present some preliminaries of 

network science and these notions will be expedited in the rest of the paper. In section III we present a historical 

account as well as discuss the research contributions related to small-world and scale-free properties. In section 

IV we discuss different models proposed in complex network analysis. In section V we consider few benchmark 

network datasets to study in connection with the two properties namely small-world and scale-free properties. In 

section VI conclusions are made. 

II. SOME PRELIMINARIES 
A network is a system whose objects are somehow connected. The objects of the system are represented as 

nodes or vertices and the connections among interacting objects are known as ties, edges, arcs, or links. Based 

on the properties of the edges, networks can be further subdivided into Undirected, Directed, and Weighted 

networks. Before going further we need to know few basic network measures popularly used in network 

analysis [20]. 

 

Degree Distribution: For a graph G =  V, E , the degree distribution of G is pk = fraction of vertices with 

degree k, for k = 1,2, … , n. Thus if there are n nodes in total in a network and nk  of them have degree k then 

pk =
nk

n
. 

Clustering Coefficient: Consider a simple connected, undirected graph G and vertex vϵV(G) with neighbor set 

N(v) . Let nv  =   N(v)  and mv  be the number of edges in the subgraph induced by N(v) , i.e., mv  =
  E(G[N(v)]) . The Clustering coefficient, cc(v) for node v with degree δ(v) is defined as 

cc v ≝  

mv

 nv
2
 

, δ v > 1

undefined, otherwise

  

The Clustering coefficient CC(G) for the entire network is defined as the average over all (well defined) 

clustering coefficients of its nodes. In case of a random network of size n the clustering coefficient will be 

CCrand =
 k 

n
 where  k  is the mean degree of the network. 

Average Path Length: The average path length L of a network measures the average number of links along the 

shortest paths for all possible pair of nodes in the network. If d i, j   is the minimum distance between nodes i  
and j  then L can be defined as: 

L =
1

n(n−1)
 d(i, j)i≠j , where n is the number of nodes in the network. 

In case of a random network of size n the average path length will be  Lrand =
log n

log  k 
 , where  k  is the 

mean degree of the network. 

III. SMALL-WORLD EFFECT AND SCALE-FREE PROPERTY 
3.1 Small world effect: During 1960s Stanley Milgram carried out the famous experiment [17], in which letters 

passed from person to person were able to reach a designated target individual in only a small number of steps. 

This result is one of the first direct demonstrations of the small-world effect, the fact that most pairs of nodes 

inmost networks seem to be connected by a short path through the network. 

On one hand, the small-world effect has obvious implications for the dynamics of processes taking 

place on networks. For example, if one considers the spread of information, or indeed anything else, across a 

network, the small-world effect implies that that spread will be fast on most real-world networks. And on the 

other hand, the small-world effect is also mathematically obvious. If the number of vertices within a distance r 

of a typical central node grows exponentially with r then the value of average path length will increase as log n, 

and this is true of many networks, including the random graph. In recent years, the term “small-world effect” 

has thus found a more precise meaning, which can be presented as follows: A network is said to exhibit the 

small-world effect if the value of average path length scales logarithmically and the clustering coefficient is very 

high as compared to a random network of same size. A brief account of theoretical work on “Small-world” 

phenomenon may be found in [3, 4, 10].  

 

 

https://en.wikipedia.org/wiki/Network_(mathematics)
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3.2 Scale free property: One way of presenting degree data is to make a plot of the cumulative distribution 

function. It is the best way to present the degree data as it reduces the noise in the tail of the curve. In case of 

many networks this distribution follows power-laws in the tails. The term “scale-free” refers to any functional 

form f(x) that remains unchanged to within a multiplicative factor under a rescaling of the independent variable 

x. In effect this means power-law forms, since these are the only solutions to f(ax) = bf(x), and hence “power-

law” and “scale-free” can be used synonymously. The most notable characteristic in a scale-free network is the 

relative commonness of nodes with a degree that greatly exceeds the average. The highest-degree nodes are 

often called “hubs”, and are thought to serve specific purposes in their networks. 

Networks with power-law degree distributions draw a great deal of attention in the literature of 

complex network research [1, 4, 9, 15, 18, 19]. They are sometimes referred to as scale-free networks, although 

it is only their degree distributions that are scale-free; one can and usually does have scales present in other 

network properties. 

IV. FEW NETWORK MODELS 
In this section we discuss few classical network models [11], using which one can obtain networks with small-

world effect and scale-free property. 

4.1 Small World Model: Many real-world networks have a geographical component to them; the nodes of the 

network have positions in space, and in many cases it is reasonable to assume that geographical proximity will 

play an important role in deciding which nodes are connected to which others. The small-world model starts 

from this idea by positing a network built on a low-dimensional regular lattice and then “rewiring” edges to 

create a low density of “shortcuts” that join remote parts of the lattice to one another. The rewiring procedure 

involves going through each edge in turn and, with probability p, moving one end of that edge to a new location 

chosen uniformly at random from the lattice, except that no double edges or self-edges are ever created. 

4.1.1 Watts-Strogatz Model: A Watts-Strogatz network is a random graph that can be obtained by rewiring 

links in a circle in which only neighbors are connected initially. Watts-Strogatz networks possess small-world 

properties as the rewiring probability p is big enough. The Watts-Strogatz model was first introduced by Duncan 

J. Watts and Steven Strogatz in their joint work published in Nature in 1998 [2]. Fig. I shows that an increasing 

the value of p results in increasing randomness [6]. A Watts-Strogatz network can be generated using the 

following steps: 

 Construct a regular ring lattice with N nodes each connected to 2m neighbors (m on each side). 

 For every node ni , i = 1,2, . . . , N  take every edge (ni  , nj  )  with i < j, and rewire it with probability p . 

Rewiring is done by replacing (ni  , nj  ) with (ni  , nk  ) where k is chosen with uniform probability from all 

possible values that avoid self-loop and link duplication.  

 

Fig. I: The value of p can tune the randomness 

4.2 Models of Network Growth 

4.2.1 Price’s Model: This model is a mathematical model for the growth of citation networks. The model 

picked up the ideas of the Simon model [5] reflecting the concept of rich get richer.  Derek Price took the 

example of a network of citations between scientific papers and expressed its properties. His idea was that the 

way how an old node (existing paper) gets new edges (new citations) should be proportional to the number of 

existing edges (existing citations) the node already has. This was referred to as cumulative advantage, now also 

known as preferential attachment. Price's work is also significant in providing the first known example of 

a scale-free network. 

 

https://en.wikipedia.org/wiki/Citation_network
https://en.wikipedia.org/wiki/Simon_model
https://en.wikipedia.org/wiki/Rich_get_richer
https://en.wikipedia.org/wiki/Price
https://en.wikipedia.org/wiki/Preferential_attachment
https://en.wikipedia.org/wiki/Scale-free_network
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The Price‟s Model may be stated as follows [11]: Consider a directed graph with n nodes. 

Let pk  denote the fraction of nodes with degree k so that,   pkk = 1. Each new node has a given out-degree 

(namely those papers it cites) and it is fixed in the long run. This does not mean that the out-degrees cannot vary 

across nodes, simply we assume that the mean out-degree m is fixed over time. It is clear that,   kpkk = m, 

consequently m is not restricted to integers. The most trivial form of preferential attachment means that a new 

node connects to an existing node proportionally to its in-degrees. The main problem of such idea is that no new 

node is connected when it is joined to the network so it is going to have zero probability of being connected in 

the future. To overcome this, Price proposed that an attachment should be proportional to some k +
k0 with k0 constant. In general k0 can be arbitrary, yet Price proposed k0 = 1, in that way an initial connection 

is associated with the new node (so the proportionality factor is now k + 1 instead of k). The probability of a 

new edge connecting to any node with a degree k is 
(k+1)pk

 (k+1)pkk
=

(k+1)pk

m+1
. 

4.2.2 Barabási-Albert Model 

In the Barabási-Albert (BA) model a network can be created by using the following steps.  

 Start from a small number m0 of nodes.  

 At each step add a new node u to the network and connect it to m(≤ m0) of the existing nodes v with 

probability pu , where 

pu =
ku

 kww

 

 

 
 

Fig. II: Power law degree distribution of a network generated using BA model. 

We can assume that we start from a connected random network of the ER type with m0 nodes. In this 

case the BA process can be understood as a process in which small inhomogeneities in the degree distribution of 

the ER network growths in time. 

V. CASE STUDY 
Complex networks can be classified into four broad categories [11]. For case study we consider four network 

data sets one from each of the four classes of network. The network data sets are obtained from network 

databases KONECT [7] and SNAP [8]. 

5.1 Networks Description 

5.1.1 Protein Network: This undirected network is a representation of protein interactions contained in yeast. A 

node in the network stands for a protein and an edge represents a metabolic interaction between two proteins. 

5.1.2 Email-Eu-Core Network: The Email-Eu network was generated using email data from a large European 

research institution. A node represents a network whereas an edge means an exchange of at least one email. 

Email-Eu-Core is the “Core” of Email-Eu network, which contains links between members of the institution. 

5.1.3 Facebook (NIPS) Network: This directed network contains Facebook user-user friendships. A node 

represents a user. An edge indicates that the user represented by the left node is a friend of the user represented 

by the right node. 

5.1.4 US Air Traffic Control Network (USATC): This network was constructed from USA‟s FAA national 

flight data centre, preferred routes database. Nodes in this network represent airports or service centres and links 

are created from strings of preferred routes recommended by National Flight Data Centre. 

 

https://en.wikipedia.org/wiki/Derek_J._de_Solla_Price
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5.2 Small-world effect of the networks 

The average path lengths and clustering coefficients of the networks are calculated using MatlabBGL toolbox. 

The obtained results are presented in the Table I. It is seen that the networks that fall in the four broad 

categories of complex networks have small average path length and high clustering coefficient in comparison 

with the corresponding random networks of same size. In case of Facebook (NIPS) network, the small-world 

effect is very prominent whereas it is marginal in case of Email-Eu-Core network as per the average path 

length is concerned. The clustering coefficients of all the networks are found to very high as compared to 

corresponding random networks. These observations suggest that the networks under study exhibit small-

world property. Since small-world networks usually have almost equal degree for all the nodes, it is robust to 

targeted attack. 

 

Networks Node Edge L CC Corresponding Random 

Network 

L CC 

Facebook 2888 2981 0.0066 0.0136 251.4265 0.0004 

USATC 1226 2615 5.216 0.0404 9.3878 0.0017 

Protein 1870 2277 0.144 0.0336 38.2013 0.0007 

Email-Eu-

Core 

1005 25571 2.0834 0.3657 2.1359 0.0253 

 

Table I: Comparison of average path length (L) and clustering coefficient (CC) of the networks with random 

networks of same size. 

 

5.3 Scale-free property of the networks 

 

 

 

Fig. III: Illustration of the characteristic power-law degree distribution of the networks. 

In Fig. III, we can observe that the degree distribution of the networks follow power-laws in the tails. 

This observation suggests that the networks under study exhibit scale-free property. In case of Facebook 

(NIPS) network, the distribution curve is noisy unlike the other three networks under consideration. Thus we 

can say it obeys a segmented power-law, which indicates the presence of many communities within the 

network. In this kind of networks where there is large variation among communities, global values of statistical 

measures can be misleading. The presence of modular structure may also alter the way in which dynamical 

processes (e.g., spreading processes and synchronization) unfold on the network. The scale-free property 
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strongly correlates with the network's robustness to random failure. But these networks are vulnerable to 

targeted attacks, because if the hubs are attacked the network will literally collapse. 
  

VI. CONCLUSION 

In this paper we have discussed the chronological development of Small-world effect and Scale-free property 

which are very common in complex network analysis. We also study four popular network datasets in 

connection with these properties. These properties can be very helpful in understanding the network topology 

and its evolution. Scale-free networks show properties of real-world networks and are often a better fit for 

modeling real-world processes. We have found that like many other real-world networks, both small-world and 

scale-free properties are prominent in the four networks that we have considered in this study. 
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