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I. INTRODUCTION 
We denote the set of all sequences (real or complex) by 𝜔. Any subset of 𝜔 is called the sequence 

space. So the sequence space is the set of scalar sequences (real or complex) which is closed under coordinate 

wise addition and scalar multiplication. 

Throughout the paper ℕ, ℝ, 𝑎𝑛𝑑 ℂ denote the space of all non negative integers, the space of all real 

numbers and the space of all complex numbers respectively. Let ℓ∞, 𝑐 𝑎𝑛𝑑 𝑐0 respectively denotes the space of 

all bounded sequences, the space of all convergent sequences and the space of all sequences converging to zero. 

Also by ℓ1, ℓ 𝑝 , 𝑐𝑠 𝑎𝑛𝑑 𝑏𝑠 we denote the space of all absolutely,  p- absolutely convergent, convergent, and 

bounded series respectively. We use the convention that any term with negative subscript equal to zero. 

For a sequence space X, the matrix domain 𝑋𝐴  of an infinite matrix A is defined as 

𝑋𝐴 = {𝑥 = (𝑥𝑘) ∈ 𝜔: 𝐴𝑥 ∈ 𝑋}                                                                                         (1.1) 

Let (𝑞𝑘) be a sequence of positive numbers and let us write 𝑄𝑘 =  𝑞𝑘
𝑛
𝑘=0  for all positive integers. Then the 

matrix 𝑅𝑞 = (𝑟𝑛𝑘
𝑞

) of Riesz mean (𝑅, 𝑞𝑛 ) is given by 

𝑟𝑛𝑘
𝑞

=  

𝑞𝑘

𝑄𝑘

                                                         𝑖𝑓 0 ≤ 𝑘 ≤ 𝑛

 0                                                    𝑖𝑓 𝑘 > 𝑛
                     

 

The Riesz mean (𝑅, 𝑞𝑛) is regular if 𝑄𝑛 → ∞, 𝑎𝑠 𝑛 → ∞ (see Petersen [2,p.10]. 

The sequence space 𝑟𝑞 (𝑢, 𝑝) introduced by Sheikh and Ganie [3] as 

𝑟𝑞 =  𝑥 =  𝑥𝑘 ∈ 𝜔:   
1

𝑄𝑘

 

𝑘

 𝑢𝑗 𝑞𝑗 𝑥𝑗

𝑘

𝑗 =0

|𝑝𝑘 < ∞  

Where 0 ≤ 𝑝𝑘 ≤ 𝐷 < ∞. 
Let 𝑝 = (𝑝𝑘) be a bounded sequence of strictly positive real numbers with sup𝑘 𝑝𝑘 = 𝐷,  𝑎𝑛𝑑 𝐻 = max⁡{1, 𝐷}. 

Then, the linear spaces ℓ 𝑝  𝑎𝑛𝑑 ℓ∞(𝑝) were defined by Maddox [4], as follows: 

ℓ 𝑝 = {𝑥 = (𝑥𝑘) ∈ 𝜔:  |𝑥𝑘

𝑘

|𝑝𝑘 < ∞} 

ℓ∞ 𝑝 = {𝑥 = (𝑥𝑘) ∈ 𝜔: sup
𝑘

|𝑥𝑘 |𝑝𝑘 < ∞} 

Which are complete spaces paranormed by 

 

𝑔1 𝑥 = [ |𝑥𝑘

𝑘

|𝑝𝑘 ]
1

𝐻  𝑎𝑛𝑑  𝑔2 𝑥 = sup
𝑘

|𝑥𝑘 |
𝑝𝑘

𝐻  

If and only if  𝑖𝑛𝑓𝑝𝑘 > 0. 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘. 
Throughout the paper we shall assume that 𝑝𝑘

−1 + {𝑝𝑘
1}−1 = 1 provided 1 < 𝑖𝑛𝑓𝑝𝑘 ≤ 𝐷 < ∞ and we denote the 

collection of all finite subset of ℕ 𝑏𝑦 ℱ 𝑤𝑕𝑒𝑟𝑒 ℕ =  0,1,2, …  . 
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Orlicz function is defined as the function M : [0,  ∞)  → [0, ∞), which is continuous, non-decreasing 

and convex such that M (0) = 0,  M (x) > 0 for x > 0 and M (x) → ∞ as 𝑥 → ∞.  

 

Lindenstrauss and Tzafriri [7] used the concept of Orlicz functions to define the space 

ℓ𝑀 =  𝑥 ∈ 𝜔:  𝑀  
|𝑥𝑘 |

𝜌
 ∞

𝑘=1 < ∞ .   (1.2) 

called Orlicz sequence space, and proved that every Orlicz sequence space contains a subspace isomorphic to 

ℓ𝑝(1 ≤ 𝑝 < ∞).  The sequence space ℓ𝑀  defined in (1.2) is a Banach space with the norm 

                       𝑥 = 𝑖𝑛𝑓  𝜌 > 0:  𝑀  
|𝑥𝑘 |

𝜌
 ∞

𝑘=1 ≤ 1    (1.3) 

 

 It is shown in [8] that every Orlicz sequence space 𝑙𝑀  contains a subspace isomorphic to ℓ𝑝(𝑝 ≥ 1) 

 An Orlicz function is said to satisfy the ∆2 − 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 for all values of u if there exists a constant 

k > 0 such that 𝑀 2𝑢 ≤ 𝑘𝑀 𝑢 , 𝑢 ≥ 0. The ∆2 − 𝑐𝑜𝑛𝑑𝑡𝑖𝑜𝑛 is equivalent to 

𝑀 𝑛𝑢 ≤ 𝑘𝑛𝑀 𝑢 , for all values of 𝑢 and 𝑛 > 1. 
A sequence space ℳ = (𝑀𝑘) of Orlicz functions is called a Musielak –Orlicz function. (see [8],[9]). 

A sequence ℵ = (𝑁𝑘) is defined by  

𝑁𝑘 𝑣 = sup  𝑣 . 𝑢 − 𝑀𝑘 𝑢 : 𝑢 ≥ 0 𝑘 = 1,2, … 
Is called the complimentary function of a Musielak-Orlicz function M. for a given Musielak-Orlicz function M, 

the Musielak-Orlicz sequence space 𝑡ℳ and its subspace 𝑕ℳare defined as follow 

𝑡ℳ = {𝑥 ∈ 𝜔: 𝐼𝑀(𝑐𝑥) < ∞,∞𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 > 0} 

𝑕ℳ = {𝑥 ∈ 𝜔: 𝐼𝑀(𝑐𝑥) < ∞, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 > 0} 

Where 𝐼𝑀  is a convex modular defined by  

𝐼𝑀 =  𝑀𝑘(𝑥𝑘

∞

𝑘=1
) 𝑎𝑛𝑑 𝑥 = (𝑥𝑘) ∈ 𝑡ℳ 

Consider 𝑡ℳ equipped with Luxemburg norm 

  𝑥  = inf  𝑘 > 0: 𝐼𝑀  
𝑥

𝑘
 ≤ 1  

Or equipped with the Orlicz norm 

  𝑥  = inf  
1

𝑘
 1 + 𝐼𝑀 𝑘𝑥  : 𝑘 > 0 . 

The notion of difference sequence spaces was introduced by Kizmaz [10], who studied the difference sequence 

spaces 𝑙∞ ∆ , 𝑐 ∆  and 𝑐0 ∆ . This notion was further generalized by Et and Colak [11] defined the sequence 

spaces 𝑙∞ ∆𝑚  , 𝑐 ∆𝑚   and 𝑐0 ∆
𝑚  .  Et and Esi [4], then defined the following spaces: 

𝑍 ∆𝑛
𝑚  = {𝑥 = (𝑥𝑘) ∈ 𝜔: (∆𝑛

𝑚𝑥𝑘) ∈ 𝑍} 

For 𝑍 = 𝑐, 𝑐0 , 𝑎𝑛𝑑 𝑙∞ where 

 

∆𝑛
𝑚𝑥 =  ∆𝑛

𝑚𝑥𝑘 = (∆𝑛
𝑚−1𝑥𝑘 − ∆𝑛

𝑚−1𝑥𝑘+1), and  ∆𝑛
0𝑥𝑘 = 𝑥𝑘  

For all 𝑘 ∈ 𝑁, which is equivalent to binomial representation 

∆𝑛
𝑚𝑥𝑘 =  (−1)𝑖  

𝑚
𝑖
 𝑥+𝑛𝑖

𝑚

𝑖=0

 

It was proved that the generalized sequence space 𝑍(∆𝑛
𝑚 ), where 𝑍 = ℓ∞, 𝑐 or 𝑐0, is a Banach space with norm 

defined by 

               𝑥 ∆𝑛
𝑚 =   𝑥𝑖  

𝑚
𝑖=1 + 𝑠𝑢𝑝 ∆𝑛

𝑚𝑥𝑘  . 

 

II. THE RIESZ SEQUENCE SPACE 𝒓𝒒(𝓜, ∆𝒗
𝒎, 𝒖, 𝒑, 𝒔) OF NON-ABSOLUTE TYPE. 

Let ℳ = (𝑀𝑖) be Musielak-Orlicz function, 𝑢 = (𝑢𝑖) be a sequence of strictly positive real numbers and 

𝑝 = (𝑝𝑘) be a bounded sequence of positive real numbers. Then we defined new difference sequence 

space 𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠) as follows: 

𝑟𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠 =  𝑥 =  𝑥𝑘 ∈ 𝜔:  |

1

𝑄𝑘
𝑠+1

𝑘

 𝑀𝑖

𝑘

𝑖=0
  𝑢𝑖𝑞𝑖∆𝑣

𝑚𝑥𝑖   |𝑝𝑘 < ∞ , 

Where 0 < 𝑝𝑘 ≤ 𝐻 < ∞. 
Which is a generalization of space defined and studied by Raj and Anand [15]. 

With the definition of matrix domain (1.1), the sequence space𝑟𝑞(ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠) may be redefined as 

𝑟𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠 = {𝑙 𝑝 }𝑅𝑞(ℳ,∆𝑣

𝑚 ,𝑢 ,𝑠) 

Where 𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠) denotes the matrix 𝑅𝑞 ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠 = 𝑟𝑛𝑘
𝑞

(ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠) defined by 
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𝑟𝑛𝑘
𝑞  ℳ, ∆𝑣

𝑚 , 𝑢, 𝑠 =

 
 
 

 
 

1

𝑄𝑛
𝑠+1

(𝑀𝑘 𝑢𝑘𝑞𝑘 − 𝑀𝑘+1 𝑢𝑘+1𝑞𝑘+1                 𝑖𝑓 0 ≤ 𝑘 ≤ 𝑛 − 1

 
𝑀𝑛 𝑢𝑛𝑞𝑛      

𝑄𝑛
𝑠+1

                                                                                        

0                                                                                                    𝑖𝑓 𝑘 > 𝑛

 𝑖𝑓 𝑘 = 𝑛 

Define the sequence 𝑦 = (𝑦𝑘) which will be used by the 𝑅𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠)-transform of a sequence 𝑥 = (𝑥𝑘 ), we 

have 

𝑦𝑘 =
1

𝑄𝑘
𝑠+1  𝑀𝑖

𝑘
𝑖=1 ( 𝑢𝑖𝑞𝑖∆𝑣

𝑚𝑥𝑖  )                                                                                    (2.1) 

The main purpose of this paper is to study some generalized difference sequence space derived by Riesz mean 

and Musielak-Orlicz function. We shall show that these spaces are complete and paranormed spaces we also 

determined the 𝛼−, 𝛽−, 𝑎𝑛𝑑 𝛾 − 𝑑𝑢𝑎𝑙𝑠 of these spaces. 

Theorem 2.1 Let ℳ = (𝑀𝑗 ) be Musielak-Orlicz function, 𝑢 = (𝑢𝑗 ) a sequence of strictly positive real numbers 

and 𝑝 = (𝑝𝑘) be bounded sequence of positive real numbers. Then 𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠) is a complete linear 

metric space paranormed by 

𝑔 𝑥 =   |
1

𝑄𝑘
𝑠+1

𝑘

 (𝑀𝑗

𝑘−1

𝑗 =0
 𝑢𝑗 𝑞𝑗  − 𝑀𝑗 +1 𝑢𝑗 +1𝑞𝑗 +1  𝑥𝑗 +

𝑀𝑘(𝑢𝑘𝑞𝑘)𝑥𝑘

𝑄𝑘
𝑠+1 |𝑝𝑘 ]

1
𝐻  

With   0 < 𝑝𝑘 ≤ 𝐷 < ∞. 𝑎𝑛𝑑 𝐻 = max{1, 𝐷} 

Proof . the linearity of 𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠) follows from the inequality. See[1]. For 𝑥, 𝑦 ∈ 𝑟𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠). 

  |
1

𝑄𝑘
𝑠+1𝑘  (𝑀𝑗

𝑘−1
𝑗 =0  𝑢𝑗 𝑞𝑗  − 𝑀𝑗 +1 𝑢𝑗 +1𝑞𝑗 +1  (𝑥𝑗 + 𝑦𝑗 ) +

𝑀𝑘(𝑢𝑘𝑞𝑘 )

𝑄𝑘
𝑠+1 (𝑥𝑗 + 𝑦𝑗 )|𝑝𝑘 ]

1
𝐻             (2.2) 

≤   |
1

𝑄𝑘
𝑠+1

𝑘

 (𝑀𝑗

𝑘−1

𝑗 =0
 𝑢𝑗 𝑞𝑗  − 𝑀𝑗 +1 𝑢𝑗 +1𝑞𝑗 +1  𝑥𝑗 +

𝑀𝑘(𝑢𝑘𝑞𝑘)𝑥𝑘

𝑄𝑘
𝑠+1 |𝑝𝑘 ]

1
𝐻  

+   |
1

𝑄𝑘
𝑠+1

𝑘

 (𝑀𝑗

𝑘−1

𝑗 =0
 𝑢𝑗 𝑞𝑗  − 𝑀𝑗 +1 𝑢𝑗 +1𝑞𝑗 +1  𝑦𝑗 +

𝑀𝑘(𝑢𝑘𝑞𝑘)

𝑄𝑘
𝑠+1 𝑦𝑘 |𝑝𝑘 ]

1
𝐻  

For any 𝛼 ∈ ℝ (see [14]) 

|𝛼|𝑝𝑘 ≤ max 1,  𝛼|𝐻 .                                                                                                               (2.3) 

It is clear that 𝑔 𝜃 = 0 𝑎𝑛𝑑 𝑔 −𝑥 = 𝑔 𝑥 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑟𝑞(ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠). Again the inequality (2.2) 

and (2.3) yield the sub additivity  of 𝑔  
𝑔 𝛼𝑥 ≤ max 1,  𝛼  𝑔 𝑥 . 

Let {𝑥𝑛} be any sequence of points of the space𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠) such that 𝑔 𝑥𝑛 − 𝑥 → 0 and (𝛼𝑛) is a 

sequence of scalars such that 𝛼𝑛 → 𝛼. Then since the inequality 

𝑔 𝑥𝑛 ≤ 𝑔 𝑥 + 𝑔 𝑥𝑛 − 𝑥  

Holds by subadditivity  of 𝑔, {𝑔 𝑥𝑛 } is bounded and we thus have 

𝑔 𝛼𝑛𝑥𝑛 − 𝛼𝑥 =   |
1

𝑄𝑘
𝑠+1

𝑘

 (𝑀𝑗

𝑘−1

𝑗 =0
 𝑢𝑗 𝑞𝑗  − 𝑀𝑗 +1 𝑢𝑗 +1𝑞𝑗 +1  (𝛼𝑛𝑥𝑗

𝑛 − 𝛼𝑥𝑗 ) +
𝑀𝑘(𝑢𝑘𝑞𝑘)𝑥𝑘

𝑄𝑘
𝑠+1 |𝑝𝑘 ]

1
𝐻  

≤ |𝛼𝑛 − 𝛼|
1

𝐻 𝑔 𝑥𝑛 + |𝛼|
1

𝐻 𝑔 𝑥𝑛 − 𝑥 . 
Which tends to zero as 𝑛 → ∞. This proves that the scalar multiplication is continuous. Hence g is paranorm on 

the 𝑟𝑞(ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠). 

Now we prove the completeness of 𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠). 

Let {𝑥 𝑗 } be any Cauchy sequence in the space 𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠). Where  𝑥 𝑗 = (𝑥0

𝑗
, 𝑥1

𝑗
, … }. Then for any 𝜖 >

0, there exists a positive integer 𝑛0(𝜖) such that 

 𝑔 𝑥𝑖 − 𝑥 𝑗  < 𝜖, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ≥ 𝑛0(𝜖)                                                                                       (2.4) 

Using definition of g for each fixed 𝑘 ∈ ℕ that 

|(𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑥𝑖)𝑘 − (𝑅𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑠)𝑥 𝑗 )𝑘 | 

≤ [ |(𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑥𝑖)𝑘 − (𝑅𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑠)𝑥 𝑗 )𝑘

𝑘

|𝑝𝑘 ]
1

𝐻 < 𝜖 

For 𝑖, 𝑗 ≥ 𝑛0(𝜖) 

Which yields that {(𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑥0)𝑘 , (𝑅𝑞 ℳ, ∆𝑣

𝑚 , 𝑢, 𝑠 𝑥1)𝑘 , … } is Cauchy sequence of real numbers for 

every fixed 𝑘 ∈ ℕ. Since R is complete, it converges say 

 (𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑥𝑖)𝑘 → (𝑅𝑞 ℳ, ∆𝑣

𝑚 , 𝑢, 𝑠 𝑥)𝑘𝑎𝑠 𝑗 → ∞,  

Using these infinitely many limits (𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑥)0, (𝑅𝑞 ℳ, ∆𝑣

𝑚 , 𝑢, 𝑠 𝑥)1, … 
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We definite the sequence { (𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑥)0, (𝑅𝑞 ℳ, ∆𝑣

𝑚 , 𝑢, 𝑠 𝑥)1, … } 

From (2.4) for each 𝑡 ∈ ℕ and 𝑖, 𝑗 ≥ 𝑛0(𝜖) 

 |(𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑥𝑖)𝑘 − (𝑅𝑞(ℳ, ∆𝑣

𝑚 , 𝑢, 𝑠)𝑥 𝑗 )𝑘 |𝑝𝑘𝑡
𝑘=0                                                          (2.5) 

≤  𝑔(𝑥𝑖 − 𝑥 𝑗 )𝐻  

< 𝜖𝐻 

Take any 𝑖, 𝑗 ≥ 𝑛0 𝜖 . first , let 𝑗 → ∞ in (2.5) and then 𝑡 → ∞ 

We obtain, 𝑔 𝑥𝑖 − 𝑥 ≤ 𝜖. 
Finally , taking 𝜖 = 1 in (2.5) and letting 𝑗 ≥ 𝑛0(1). We have by minkowski’s inequality for each 𝑡 ∈ ℕ that 

[ |(𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑥)𝑘 |𝑝𝑘 ]

1
𝐻 ≤ 𝑔 𝑥𝑖 − 𝑥 + 𝑔(𝑥𝑖).

𝑡

𝑘=0

 

≤ 1 + (𝑥𝑖) 

Which implies that 𝑥 ∈ 𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠). Since 𝑔 𝑥 − 𝑥𝑖 ≤ 𝜖𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖 ≥ 𝑛0(𝜖) it follows that 𝑥𝑖 →

𝑥 𝑎𝑠 𝑖 → ∞. Hence the space 𝑟𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠  is complete. 

Theorem 2.2 Let ℳ =  𝑀𝑗   be Musielak-Orlicz function 𝑢 =  𝑢𝑖  be a sequence of strictly positive real 

numbers and 𝑝 =  𝑝𝑘  be a bounded sequence of real numbers. Then the sequence space 𝑟𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠  of 

non absolute type is linearly isomorphic to the ℓ(𝑝) where 0 < 𝑝_𝑘 ≤ 𝐷 < ∞. 
Proof. To show that the space 𝑟𝑞 ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠  and ℓ 𝑝  are isomorphic, we have to show that there exists a 

linear bijection between these spaces. Define a linear transformation 

𝑇: 𝑟𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠 →  ℓ 𝑝  𝑏𝑦 𝑥 → 𝑦 = 𝑇𝑥 by using equation (2.2).The linearity of T is trivial. Further it is 

obvious that 𝑥 = 𝜃, whenever 𝑇 𝑥 = 𝑇 𝜃  and hence T is injective. Let  𝑦 ∈ ℓ 𝑝  and define the sequence 

𝑥 =  𝑥𝑘  by 

𝑥𝑘 =   
1

𝑀𝑛 (𝑢𝑛𝑞𝑛 )
−

1

𝑀𝑛+1(𝑢𝑛+1𝑞𝑛 +1)
𝑄𝑘

𝑠+1𝑦𝑘 +
𝑄𝑘

𝑠+1

𝑀𝑘 (𝑢𝑘𝑞𝑘)
𝑦𝑘  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ ℕ𝑘−1

𝑛=0 . 

Then 

𝑔 𝑥 =   |
1

𝑄𝑘
𝑠+1  (𝑀𝑗  𝑢𝑗𝑞𝑗  − 𝑀𝑗 +1(𝑢𝑗 +1𝑞𝑗 +1)𝑥𝑗

𝑘−1

𝑗 =0
𝑘

+
𝑀𝑘 𝑢𝑘𝑞𝑘 𝑥𝑘

𝑄𝑘
𝑠+1

  𝑝𝑘  

1
𝐻 

 

=     𝛿𝑘𝑗 𝑦𝑗

𝑘

𝑗 =0

 

𝑝𝑘

𝑘

 

1
𝐻 

 

=    𝑦𝑘  𝑝𝑘

𝑘

 

1
𝐻 

 

= 𝑔1 𝑦 < ∞ 

Where  𝛿𝑘𝑗 =  
1   ,                     𝑖𝑓 𝑘 = 𝑗
0   ,                    𝑖𝑓 𝑘 ≠ 𝑗

  

Thus , we have 𝑥 ∈ 𝑟𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠 . Consequently T is surjective and paranorm preserving. Hence , T is 

linear bijection and this shows the space 𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠) and ℓ(𝑝) are linearly isormorphic. 

 

III. BASIS AND 𝜶−, 𝜷−, 𝑨𝑵𝑫 𝜸 − 𝑫𝑼𝑨𝑳𝑺 𝑶𝑭 𝑻𝑯𝑬 𝑺𝑷𝑨𝑪𝑬 𝒓𝒒(𝓜, ∆𝒗
𝒎, 𝒖, 𝒑, 𝒔). 

In this section, we compute 𝛼−, 𝛽 − 𝑎𝑛𝑑 𝛾 − 𝑑𝑢𝑎𝑙𝑠 of the space 𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠) and finally we give the 

basis for the space 𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠). 

For the sequence space X and Y, define the set  
𝑆 𝑋, 𝑌 =  𝑧 =  𝑧𝑘 : 𝑥𝑧 = (𝑥𝑘𝑧𝑘 ∈ 𝑌} 
The 𝛼−, 𝛽 − 𝑎𝑛𝑑 𝛾 − 𝑑𝑢𝑎𝑙𝑠 of the sequence space X, respectively denoted by 𝑋𝛼 , 𝑋𝛽  𝑎𝑛𝑑 𝑋𝛾  which are 
defined by 

𝑋𝛼 = 𝑆 𝑋, ℓ1 ,   𝑋𝛽 = 𝑆 𝑋, 𝑐𝑠   𝑎𝑛𝑑 𝑋𝛾 = 𝑆(𝑋, 𝑏𝑠) 
Firstly, we state some lemmas which are required in proving our theorems. 
Lemma 3.1( [12] ) (i) Let 1 < 𝑝𝑘 ≤ 𝐷 < ∞. Then 𝐴 ∈ (ℓ 𝑝 , ℓ1) if and only if there exists an integer 𝐵 > 1 
such that 

sup
𝑘∈ℱ

 |  𝑎𝑛𝑘

𝑛∈ℕ𝑘

𝐵−1|𝑝𝑘
′

< ∞. 

(ii) Let 0 < 𝑝𝑘 ≤ 1. Then 𝐴 ∈ (ℓ 𝑝 , ℓ1) if and only if  

sup
𝑘∈ℱ

sup
𝑘

|  𝑎𝑛𝑘 𝐵−1

𝑛∈ℕ

|𝑝𝑘 < ∞. 
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Lemma 3.2 [13] (i) Let 1 < 𝑝𝑘 ≤ 𝐷 < ∞. Then 𝐴 ∈ (ℓ 𝑝 , ℓ∞) if and only if there exists an integer 𝐵 > 1 
such that 

sup𝑛  |𝛼𝑛𝑘𝑘 𝐵−1|𝑝𝑘
′

< ∞.                                                                                                                    ( 3.1) 
(ii) 1 < 𝑝𝑘 ≤ 1, for every 𝑘 ∈ ℕ. Then 𝐴 ∈ (ℓ 𝑝 , ℓ∞) if and only if  
sup𝑛,𝑘 |𝛼𝑛𝑘 |𝑝𝑘 < ∞                                                                                                                                 (3.2) 
Lemma 3.3 [10] Let 1 < 𝑝𝑘 ≤ 𝐷 < ∞. for every 𝑘 ∈ ℕ. Then 𝐴 ∈ (ℓ 𝑝 , c) if and only if (3.1), (3.2) hold 
along with 
lim𝑛 𝛼𝑛𝑘 = 𝛽𝑘  𝑓𝑜𝑟 𝑘 ∈ ℕ. also holds                                                                                                 (3.3) 
Theorem 3.1. Let ℳ = (𝑀𝑗 ) be a Musielak-Orlicz function, 𝑢 = (𝑢𝑘) be a sequence of strictly positive real 

numbers and 𝑝 = (𝑝𝑘) be a bounded sequence of positive real numbers. Define the sets 𝐷1(ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠) 

and 𝐷2(ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠) as follows: 

𝐷1 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠 = ⋃B>1

{α = (αk)

∈ ω: sup
k∈ℱ

 |  [(
1

Mk ukqk 
−

1

Mk+1 uk+1qk+1 
)Qk

s+1αn

n∈kk

+
Qn

s+1

Mn unqn 
αn]B−1|pk

′
< ∞ 

And  
𝐷2 ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠 =

⋃𝐵>1  𝛼 =  𝛼𝑘 ∈ 𝜔:  |[(
𝛼𝑘

𝑀𝑘  𝑢𝑘𝑞𝑘  
+  

1

𝑀𝑘 (𝑢𝑘𝑞𝑘)
−

1

𝑀𝑘+1(𝑢𝑘+1𝑞𝑘+1)
  𝛼𝑖)𝑄𝑘

𝑠+1]𝐵−1|𝑝𝑘
′𝑛

𝑖=𝑘+1𝑘 < ∞ . 

Then  
[𝑟𝑞 ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠 ]𝛼 = 𝐷1(ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠) and 

[𝑟𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠 ]𝛽 = 𝐷2(ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠)⋂𝑐𝑠. 
Proof. Let us take any 𝛼 = (𝛼𝑘) ∈ 𝜔 we can easily derive with (2.1) that 

𝛼𝑛𝑥𝑛 =   
1

𝑀𝑘(𝑢𝑘𝑞𝑘)
−

1

𝑀𝑘+1(𝑢𝑘+1𝑞𝑘+1)
 𝛼𝑛𝑄𝑘

𝑠+1𝑦𝑘

𝑛−1

𝑘=0
+

𝛼𝑛

𝑀𝑛(𝑢𝑛𝑞𝑛 )
𝑄𝑛

𝑠+1𝑦𝑛  

= (𝑐𝑦)𝑛 .                                                                                                                                                     (3.4) 
Where 𝑐 = (𝑐𝑛𝑘 ) is defined as 

𝑐𝑛𝑘 =

 
 
 

 
  

1

𝑀𝑘(𝑢𝑘𝑞𝑘)
−

1

𝑀𝑘+1(𝑢𝑘+1𝑞𝑘+1)
 𝛼𝑛𝑄𝑘

𝑠+1,       𝑖𝑓 0 ≤ 𝑘 ≤ 𝑛 − 1

𝛼𝑛

𝑀𝑛(𝑢𝑛𝑞𝑛)
𝑄𝑛

𝑠+1                                                   𝑖𝑓 𝑘 = 𝑛             

0                                                                𝑖𝑓 𝑘 > 𝑛

  

For all 𝑛, 𝑘 ∈ ℕ. Thus , we observe by combining (3.4) with (i) of lemma (3.1) that 
𝛼𝑥 =  𝛼𝑛𝑥𝑛 ∈ ℓ1  𝑤𝑕𝑒𝑛𝑒𝑣𝑒𝑟 𝑥 = (𝑥𝑛 ) ∈ 𝑟𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠) if and only if 𝑐𝑦 ∈ ℓ1 𝑤𝑕𝑒𝑛𝑒𝑣𝑒𝑟 𝑦 ∈ ℓ𝑝 . This 

gives the result that  [𝑟𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠 ]𝛼 = 𝐷1(ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠) 
Further, consider the equation 

 𝛼𝑛𝑘 𝑥𝑘
𝑛
𝑘=0 =    

𝛼𝑘

𝑀𝑘(𝑢𝑘𝑞𝑘)
+  

1

𝑀𝑘 (𝑢𝑘𝑞𝑘 )
−

1

𝑀𝑘+1(𝑢𝑘+1𝑞𝑘+1)
  𝛼𝑖

𝑛
𝑖=𝑘+1  𝑄𝑘

𝑠+1 𝑛
𝑘=0 𝑦𝑘                                          (3.5) 

=  𝐷𝑦 𝑛  
Where 𝐷 =  𝑑𝑛𝑘   is define as 

𝑑𝑛𝑘 =  
 

𝛼𝑘

𝑀𝑘 𝑢𝑘𝑞𝑘 
+  

1

𝑀𝑘 𝑢𝑘𝑞𝑘 
−

1

𝑀𝑘+1 𝑢𝑘+1𝑞𝑘+1 
  𝛼𝑖

𝑛

𝑖=𝑘+1

 𝑄𝑘
𝑠+1       𝑖𝑓 0 ≤ 𝑘 ≤ 𝑛

0                                                                                                   𝑖𝑓 𝑘 > 𝑛

  

Thus , we deduce from Lemma  (3.3) with (3.5) that 𝛼𝑥 =  𝛼𝑛𝑥𝑛 ∈ 𝑐𝑠 whenever 
𝑥 = (𝑥𝑛 ) ∈ 𝑟𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠) if and only if 𝐷𝑦 ∈ 𝑐 ∈ 𝑤𝑕𝑒𝑛𝑒𝑣𝑒𝑟 𝑦 ∈ ℓ(𝑝). Therefore , we derive from (3.1) 

that 

 |   
𝛼𝑘

𝑀𝑘(𝑢𝑘𝑞𝑘)
+  

1

𝑀𝑘 (𝑢𝑘𝑞𝑘 )
−

1

𝑀𝑘+1(𝑢𝑘+1𝑞𝑘+1)
  𝛼𝑖

𝑛
𝑖=𝑘+1  𝑄𝑘

𝑠+1 𝑘 𝐵−1|𝑝𝑘
′

< ∞                                                     (3.6)  

And the lim𝑛 𝑑𝑛𝑘  exists and hence shows that  𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠).  𝛽 = 𝐷2(ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠)⋂𝑐𝑠. 
From Lemma (3.2) together with (3.5) that 𝛼𝑥 =  𝛼𝑘𝑥𝑘 ∈ 𝑏𝑠 whenever 𝑥 ∈ 𝑟𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠) if and only 
if 𝐷𝑦 ∈ ℓ∞  whenever 𝑦 =  𝑦𝑘 ∈ ℓ 𝑝 . Therefore , we again obtain the condition (3.6) which means that 
 𝑟𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠).  𝛾 = 𝐷2(ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠)⋂𝑐𝑠. And the proof of the theorem is complete. 

Theorem 3.2 Let 1 < 𝑝𝑘 ≤ 1 for any 𝑘 ∈ ℕ ℳ = (𝑀𝑗 ) be Musielak-Orlicz function, 𝑢 = (𝑢𝑘) be a sequence 

of strictly positive real numbers and 𝑝 = (𝑝𝑘) be a bounded sequence of positive real numbers. Define the 
sets 𝐷3(ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠) and 𝐷4(ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠) as follows: 
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𝐷3 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠 

=  𝛼 =  𝛼𝑘 

∈ 𝜔: sup
𝑘∈ℱ

sup
𝑘

|    
1

𝑀𝑘(𝑢𝑘𝑞𝑘)
−

1

𝑀𝑘+1(𝑢𝑘+1𝑞𝑘+1)
 𝛼𝑛𝑄𝑘

𝑠+1 +
𝛼𝑛

𝑀𝑛(𝑢𝑛𝑞𝑛)
𝑄𝑛

𝑠+1 

𝑛∈𝑘

|𝑝𝑘 < ∞  

And  
𝐷4 ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠 

=  𝛼 =  𝛼𝑘 

∈ 𝜔: sup
𝑘

  (
𝛼𝑘

𝑀𝑘(𝑢𝑘𝑞𝑘)
+  

1

𝑀𝑘(𝑢𝑘𝑞𝑘)
−

1

𝑀𝑘+1(𝑢𝑘+1𝑞𝑘+1)
  𝛼𝑖

𝑛

𝑖=𝑘+1
)𝑄𝑘

𝑠+1  
𝑝𝑘

< ∞  

 𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠).  𝛼 = 𝐷3(ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠) 
 𝑟𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠).  𝛽 = 𝐷4(ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠) 

Proof . This is obtained by proceeding in the proof of theorem (3.1) by using second parts of Lemma 
(3.1),(3.2) and (3.3) instead of the first parts, so we omit the details. 
Schauder basis for the space  𝑟𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠)will be given 
Theorem 3.3 Let ℳ = (𝑀𝑗 ) be Musielak-Orlicz function, 𝑢 = (𝑢𝑘) be a sequence of strictly positive real 

numbers and 𝑝 = (𝑝𝑘) be a bounded sequence of real numbers. Define the sequence  

𝑏 𝑘  𝑞 =  𝑏𝑛
 𝑘 

(𝑞)  of the element of the space 𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠), for every fixed 𝑘 ∈ ℕ 

𝑏𝑛
 𝑘  𝑞 =  

 
1

𝑀𝑛(𝑢𝑛𝑞𝑛)
−

1

𝑀𝑛+1(𝑢𝑛+1𝑞𝑛+1)
 𝑄𝑛

𝑠+1 + 𝑢𝑛
−1

𝑄𝑘
𝑠+1

𝑀𝑘(𝑢𝑘𝑞𝑘)
,           𝑖𝑓 0 ≤ 𝑛 ≤ 𝑘 − 1

0                                                                                                          𝑖𝑓 𝑛 > 𝑘 − 1 

  

Then the sequence  𝑏𝑛
 𝑘  𝑞   is the basis for the space 𝑟𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠) any element in the space has a 

unique representation of the form 
𝑥 =  𝜆𝑘 𝑞 𝑏 𝑘 (𝑞)𝑘                                                                                                                                (3.7) 
Where 𝜆𝑘 𝑞 =  𝑅𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑠)𝑥 𝑘  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ ℕ1 < 𝑝𝑘 ≤ 𝐷 < ∞. 

Proof . it is clear that  𝑏 𝑘 (𝑞) ⊂ 𝑟𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠), since 

𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑏 𝑘  𝑞 = 𝑒(𝑘) ∈ ℓ 𝑝 𝑓𝑜𝑟  𝑘 ∈ ℕ                                                                           (3.8) 

and 1 < 𝑝𝑘 ≤ 𝐷 < ∞ 𝑤𝑕𝑒𝑟𝑒  𝑒(𝑘) is a sequence whose only non zero term is 1 in 𝑘𝑡𝑕  place for each 𝑘 ∈ ℕ. 
Let 𝑥 ∈ 𝑟𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠) be given. For every non-negative integer t, we put 
𝑥(𝑡) =  𝜆𝑘 𝑞 𝑏(𝑘)𝑡

𝑘=0                                                                                                                              (3.9) 
Then, we obtain by applying 𝑅𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑠) to (3.9) with (3.8) that 

𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑥 𝑡 =  𝜆𝑘 𝑞 𝑅𝑞 ℳ, ∆𝑣

𝑚 , 𝑢, 𝑠 𝑏 𝑘  𝑞 =  𝑅𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠)𝑥)𝑘𝑒(𝑘)

𝑡

𝑘=0

.

𝑡

𝑘=0

 

And 

(𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 (𝑥 − 𝑥 𝑡 )) =  

0                                     𝑖𝑓 0 ≤ 𝑖 ≤ 𝑡

𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑥)𝑖              𝑖𝑓 𝑖 > 𝑡.

  

 
Hence  

𝑔 𝑥 − 𝑥 𝑡  =    𝑅𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠)𝑥)𝑖 

𝑝𝑘

∞

𝑖=𝑡

 

1
𝐻 

 

≤    𝑅𝑞 (ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠)𝑥)𝑖 

𝑝𝑘

∞

𝑖=𝑡0

 

1
𝐻 

 

<
𝜖

2
 

< 𝜖 
For all 𝑡 > 𝑡0 which proves that 𝑥 ∈ 𝑟𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠) is represented as equation (3.7). 
Let us show that the uniqueness of the representation for  𝑥 ∈ 𝑟𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠) given by (3.7) 

Suppose on contrary that there exists a representation 𝑥 =  𝜇𝑘 𝑞 𝑏 𝑘 
𝑘  𝑞 . since the linear 

transformation T from 𝑥 ∈ 𝑟𝑞(ℳ, ∆𝑣
𝑚 , 𝑢, 𝑝, 𝑠) to ℓ(𝑝) used in Theorem 2.2 is continuous, we have 
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(𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑥)𝑛 =  𝜇𝑛

𝑘

 𝑞 𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑏 𝑘 (𝑞)𝑛 =  𝜇𝑘

𝑘

 𝑞 𝑒 𝑘 = 𝜇𝑛(𝑞) 

For all 𝑛 ∈ ℕ which contradicts the fact that 𝑅𝑞 ℳ, ∆𝑣
𝑚 , 𝑢, 𝑠 𝑥)𝑛 = 𝜆𝑛 𝑞 , ∀𝑛 ∈ ℕ 

Hence the representation (3.7) is unique. 

 

IV. CONCLUSION 
We observe that the space 𝑟𝑞 (ℳ, ∆𝑣

𝑚 , 𝑢, 𝑝, 𝑠) is not only linear but also a complete linear metric space 

paranormed by  

𝑔 𝑥 =   |
1

𝑄𝑘
𝑠+1

𝑘

 (𝑀𝑗

𝑘−1

𝑗 =0
 𝑢𝑗 𝑞𝑗  − 𝑀𝑗 +1 𝑢𝑗 +1𝑞𝑗 +1  𝑥𝑗 +

𝑀𝑘(𝑢𝑘𝑞𝑘)𝑥𝑘

𝑄𝑘
𝑠+1 |𝑝𝑘 ]

1
𝐻  

With, 0 < 𝑝𝑘 ≤ 𝐷 < ∞, 𝑎𝑛𝑑 𝐻 = max  {1, 𝐷}. The space is also isomorphic to the space of p- summable 

sequences ℓ 𝑝 .  
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