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I. INTRODUCTION 
 In 2003, Kalman and Mena wrote that among numerical sequences the Fibonacci numbers achieved a 

kind of celebrity status, because they are famous for possessing wonderful and amazing properties – some are 

well known. Among these properties, are that the difference of two Fibonacci numbers is a Fibonacci number, 

ratios of Fibonacci numbers converge to the golden mean, any four consecutive Fibonacci numbers are 

Fibonacci numbers, the greatest common divisor, gcd, of two Fibonacci numbers is another Fibonacci number, 

just to mention but few. So, Fibonacci numbers stand out to be a kind of super sequence. To start with, 

Fibonacci sequence
n

f say, are the terms of the sequence 0 ,1,1, 2 , 3, 5 , ... wherein each term is the sum of the 

two preceding terms starting with 0 and 1 denoted by 
0

f  and 
1

f , respectively. The name Fibonacci sequences 

is due to Francois Edwouard Anatole Lucas in 1876. Sum of squares, asymptotic behavior, running sums, finite 

matrix form of Fibonacci numbers can be seen in [15]. Recently, infinite matrices generated by Fibonacci 

numbers has been used in the works of [16].        

The book by [18], version 2002 I feel, is the principal authority in the studies of Fourier series, wherein he also 

wrote a certain form of trigonometrical series called Fourier series of  form:    
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where the coefficients 
0 1 1 2

, , . . . , , , . . .a a b b  are independent of x. The coefficients are real, and since all the 

terms of (1) are of period 2 , it is sufficient to study trigonometrical series in any interval of length 2 , for 

example, (0 , 2 ) o r ( , )   . The system of functions1, co s , s in , co s 2 , s in 2 , . . .x x x x , called the 

trigonometrical system is orthogonal in ( , )  . Furthermore, let  

' ''

, , ,
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m n m n m n
I m x n x I I
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  denoting the corresponding integrals with  
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Integrating the formula  

2 s in s in co s( )m x n x m n x  co s( )m n x  and taking into account the periodicity of integral functions, 

then we find that
,

0 w h e n e v e r
m n

I m n  . This is true even when m = n. The ' s are now 

2 , , , . . .,   and so, if for a given function f  we put   

 
1 1

( ) co s , ( ) s in
v v

a f t v td t b f t td t
 

   

                                                        (2) 

Then (1) is called the Fourier series of f . On changing the definition of Fourier series in the case of
0

a , we 

shall call 
v

a  and 
v

b the Fourier coefficients of the function f . So many works on the study of Fourier series 

and their convergence were carried out by several authors starting from [5] who worked mainly on Fourier 

series. This paper cannot contain all the references to research works in this respect starting from late 1800’s. 

However, the following periodical papers as grouped below were enough for this piece of work: 
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On summability and convergence of Fourier series see [2], [3], [4], [6] and [17]; on Cesaro summability of 

Fourier series see [6], [7], [8] and [9]; on linear and triangular methods of summability see [11] and [12]; and on 

matrix methods of summability see [13] and [14]. 

In 1911, Teoplitz, O. published some work concerning infinite matrices with conditions. They were matrices of 

the form: 
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. . . . . .
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. . . . . . . . . . . . . . . . . .

n

n

n n n n n

a a a a

a a a a

A

a a a a

 

 

 

 
 

 

 
 

 

The matrix A is called a Teoplitz matrix or T-matrix if  

(i) lim 0 , 0 , 1, 2 , .. . ,
iv

i

a v
 

 

 

( i i) lim 1
i

i

A
 

 and 

( i i i) , 0 , 1, 2 , ...
i

N C i    

where C is independent of i, see ([18], p. 39).  

Summability is about generalization of the convergence of sequences and series. The use of infinite matrices to 

realize convergence cannot be over emphasized. Any infinite matrix used in summability of sequences and 

series is called a method of summability, for instance the (C, 1) method called the Cesaro method of 

summability, where the limit of a sequence (xn) according to Cesaro can be defined as limyn, where (yn) is given 

by
0

1

1

n

n i

i

y x
n 




 . In [5] Fejer’s theorem on the other hand states that if a 

function (0 , 2 ) , 1
p

f L p    then the Cesaro’s means yn of the partial sum of the Fourier series of f 

converges to f in the 
p

L - norm. If in addition ,f  is continuous and ( ) ( )f f   , then
n

y converges 

uniformly to f . Several generalizations of (C, 1) method led to the methods (C, k), up to (C,  ).  The work of 

Bosanquet, see [1] is regarded as the best generalization of (C,  ) method. We remark that it is natural replace 

to replace (C, 1) method with any other methods. We wish to replace with Fibonacci infinite matrix denoted by 

F, defined in [16] as follows: 
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(3)                                         

   It is a triangle, that is, 0 a n d 0 fo r ( 1, 2 , 3, .. . ) .
n n n v

f f v n n     It is also a regular matrix, for it 

satisfies the condition of regular matrices as spelt out in [19], that any matrix 
, 1

( )
nv n v

A a



  is regular if and 

only if  

( ) th e re ex is ts 0 ,i M  such that for every 1, 2 , 3, ...n 

1

| | 1
n v

v
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( ) lim 0
n v

n

ii a
 

 fo r every 1, 2 , ...v   and 

 
1

( ) lim 1 .
n v

n
v

i i i a



 

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Clearly, the Fibonacci matrix F is regular. We wish to establish an analogue that is replaced by  (C, 1) method is 

replaced F, then F –transform of the of the partial sum of the Fourier series of 2 -period continuous function f 

converges uniformly to f. To do this, we need to fix notations and some necessary preceding lemmas to the 

main result of this paper. 
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II. BASIC DEFINITIONS AND LEMMAS 

Definition 2.1 
2

{ : | 2 p e rio d ic a n d c o n tin u o u s}C f f is


    , the set of all continuous, 2 -

periodic functions. If any f is 2 -periodic and ( , )f     is Riemann integrable, then (2) holds. 

If 0 , th e n 0
v

v b  and the Fourier series (1) is the Fourier series of f with Fourier 

coefficients a n d
v v

a b .For each
2

a n df C n


    the equality 
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v
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v





    is called the Dritchlet kernel. And ( , )
n

s f t  the nth  

partial sum of the Fourier series (1). 
v

D has the following properties:   

Lemma 2.1:
2

1
( ) fo r a ll , an d ( ) | ( ) | 1

2
v v

i D C v ii D t v v


       for any an dv t   .  

In the equation: 

     

1
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F F F
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( , )
F

n
f t is the sequence of partial sums of the Fourier series of any 2  periodic continuous function f, 

while ( )
F

n
K t  is the nth kernel corresponding to the Fibonacci matrix, F. We wish to show that ( , )

F

n
f t , the 

transform of  ( , )
n

s f t  under F converges uniformly to f.  

We wish to adopt the following notations: 
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 Note that ( ) ( ) , fo r th e k e rn e l ( )
F F F

n n n
K t K t K t  is 2  periodic and continuous function. Also, 
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This function is defined at those points for which the preceding limit exists. If f is continuous at some point x 

then ( ) ( )
f

x f x  ; and if it has a jump discontinuity at 
0

x , then 

            0 0

0

( ) ( )
( )

2
f

f x f x
x
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Lemma 2.2 (Kalman and Mena, [15]): Let ( )
n

f be a sequence of Fibonacci numbers. Then their sum of squares 
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Lemma 2.3 (Kara and Basarir, [16]):  Let ( )
n

f be a sequence of Fibonacci numbers. Then       

1
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Lemma 2.4: For any bounded sequence such that | | , ,
v

x M v    we have  
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Lemma 2.5 ([17] p.44): Let nth kernel of an identity infinite matrix be denoted by ( )
n

K t satisfying the 

following conditions:   

1
( ) ( ) 1

n
a K t d t


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( ) ( ) 0
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positive if it satisfies conditions (a) and (b); and is called quasi-positive if it satisfies condition (c) only. 

  

Lemma 2.6 ([18], p.46): (i) If ( )
n

K t is a positive kernel, then for any f satisfying m f M  , we have 

( , )
n

m x f M  . (ii) If ( )
n

K t is a quasi-positive kernel, and | |f M then it implies that 

| ( , ) |
n

x f C M  , with C as in condition (c). 

The last Lemma and equation (4) above suggest that we must perform the calculations for ( )
F

n
K t , the nth 

kernel corresponding to the Fibonacci matrix, F defined in (3),and subsequently for 

s u p
F
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III. MAIN RESULT 

Theorem 3.1:Let [ , ]f C     be such that ( , ) ( , ) fo r ,
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 (iv) ( )
n

   m ax | ( ) | 0 ,
F

n
t

K t
  

  for all (0 ,1).  Then [ , ] , ,f C t      we 

have: ( , )
F

n
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f
x , uniformly. 

Proof: Assume that ( )
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x exists at some point [0 , 2 ]x  . Then there exists some 0    such 
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  , for all 0 t   . In view of uniform continuity of f, we can select 

a  to be independent of [ , ]x a b . So, from (5) and (7) we have,   
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Let us perform some necessary estimates as follows: 
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Clearly, H is independent of x. So, for some N, choose 
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H
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x  , uniformly.   

                                             Q.E.D. 
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IV. CONCLUSION 
In conclusion we have successively used Fibonacci Matrix of recent origin to realize uniform convergence of 

Fourier series, a method different from Fejér since 1904. Thus the contribution is new  method, or proof,  to 

show uniform convergence of Fourier series. 
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