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ABSTRACT: Recently, a new lifetime distribution, called extended Erlang-truncated exponential distribution 

was introduced by Okorie et al. (2017). In this paper, we present explicit expressions as well as some 

recurrence relations for single and product moments of k th lower record values from this distribution. The 

results are deduced for moments of lower record values. Further, conditional expectation, recurrence relations 

for single moments and truncated moments are used to characterize this distribution. At the end, we also carry 

out some computational work. 
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I. INTRODUCTION 

 A random variable X is said to have extended Erlang-truncated exponential distribution (Okorie et al. 

(2017)) if its probability density function )(pdf  is given by  

 
1)1()1( )1()1()(  

  

 xexe eeexf ,  0x ,  0,,                                      (1) 

with the distribution function )(df  
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It is easily seen that 

 )()1()()1( )1( xfexFe xe 
  ,                          (3) 

where   ,   are shape parameters and   is scale parameter. 

 The extended Erlang-truncated exponential distribution have several characteristics like (has tractable 

pdf  whose shape is either decreasing or unimodal)  and  the failure rate function is characterized by decreasing, 

constant and increasing shapes that make it more sophisticated for modeling data sets from various life time 

characteristic especially those with early failure time characteristic. This distribution demonstrates a more 

reasonable fit than the other competitive distributions [Okorie et al. (2017)]. 

 Let }1,{ nX n  be a sequence of independent identically distributed )(iid  random variables with df  

)(xF  and pdf )(xf . The j th order statistic of a sample nXXX ,,, 21   is denoted by njX : . For a fixed 

1k , we define the sequence }1),({ nnLk  of k th lower record times of }1,{ nX n  as follows: 

 1)1( kL  
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 The sequence }1,{ )( nZ k
n  with 1)(:

)(
 knLk

k
n k

XZ , ,2,1n , is called the sequence of k th 

lower record values of }1,{ nX n . For convenience, we shall also take 0
)(

0


k
Z . Note that for 1k  we 
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have )(
)1(

nLn XZ  , 1n , i.e. the record values of }1,{ nX n . Then the pdf  of 
)(k

nZ  and the joint pdf  of 

)(k
mZ  and 
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nZ  are as follows: 
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respectively, [Pawlas and Szynal (1998)]. 

The conditional pdf of 
)(k

nZ given xZ k
m )(

, is 
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 For some recent developments on k th lower record values with special reference to those arising 

from generalized extreme value, Gumble, inverse Pareto, inverse generalized Pareto, inverse Burr, inverse 

Weibull, power, uniform, Frechet and Dagum distributions, see Pawlas and Szynal (1998, 2000), Bieniek and 

Szynal (2002) and Kumar (2016), respectively. In this paper we mainly focus on the study of k th lower 

record values arising from the extended Erlang-truncated exponential distribution. 

 

II. RELATIONS FOR SINGLE MOMENTS 

 In this section, we derive explicit expressions and recurrence relations for single moments of k th 

lower record values from the extended Erlang-truncated exponential distribution. 

Theorem 2.1.  For the extended Erlang-truncated exponential distribution as given in (2). Fix a positive integer 

k , for 1 kn  and ,1,0j , 

 



 



0

)(

)(

)(

)]1([

)(
)(

p
n

p

j

n
jk

n
kpj

jz

e

k
ZE






.                                              (7) 

Proof.  From (4), we have 
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Setting 
/1)]([ xFt   in (8), we find that 
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On using the logarithmic expansion 
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where )( jZ p  is the coefficient of jpt   in the expansion of 
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The result given in (7) can be proved in view of Gradshetyn and Ryzhik (2007, p-551), by noting that 
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Corollary 2.1.  The explicit expression for single moments of lower record values from the extended Erlang-

truncated exponential distribution has the form 
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Expression (13) can be used to obtain the means of lower record values from extended Erlang-truncated 

exponential distribution for arbitrary chosen values of  ,  ,   and various sample size 5,,2,1 n . Some 

numerical computations for are given in Table 2.1. 

 

Table 2.1.  Means of lower record values 
 
n  

1 ,  1  1 ,  2  

1  2  3  1  2  3  
1 1.581819 2.372649 2.899816 1.156402 1.734545 2.119935 

2 0.561706 1.123412 1.553286 0.410640 0.821280 1.135544 

3 0.242057 0.635803 0.983492 0.176958 0.464809 0.718990 

4 0.111823 0.384924 0.664101 0.081749 0.281402 0.485496 

5 0.053404 0.241211 0.463878 0.039042 0.176339 0.339122 

 
n  

2 ,  1  2 ,  2
 

1  2  3  1  2  3  
1 0.790909 1.186324 1.449908 0.578201 0.867272 1.059967 

2 0.280853 0.561706 0.776643 0.205320 0.410640 0.567772 

3 0.121028 0.317902 0.491746 0.088479 0.232405 0.359495 

4 0.055911 0.192462 0.332050 0.040875 0.140701 0.242748 

5 0.026702 0.120605 0.231939 0.019520 0.088169 0.169561 

 

Behaviours of the means of record statistics from the extended Erlang truncated exponential distribution for 

5n  and different values of parameters are presented in following figures. 

 

 
  

Now, we obtain the recurrence relations for single moments of k th lower record values from the extended 

Erlang-truncated exponential distribution in the following theorem. 

Theorem 2.2.  For the distribution given in (2) and 1 kn , ,1,0j , 
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where 

 xej exx )1(1)(


 . 

Proof.  In view of Bieniek and Szynal (2002), note that 
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On using (3) in (15) and rearranging the resulting expression, which gives (14). 

Corollary 2.2.  The recurrence relations for single moments of lower record values from the extended Erlang-

truncated exponential distribution has the form 
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III. RELATIONS FOR PRODUCT MOMENTS 

 In this section, we present explicit expressions and recurrence relations for product moments of k th 

lower record values from the extended Erlang-truncated exponential distribution. 

Theorem 3.1.  For the distribution given in (2). Fix a positive integer 1k , for 11  nm  and ,1,0, ji
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Proof.  From (5), we have 
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where 
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Taking )](ln)(ln[ xFyFw   in (18), we find that 
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On using (10) in (19), we get 
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Substituting (21) in (17), we get 
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Putting 
/1)]([ xFt   in (22) and simplifying the resulting expression after using (12), we find that 
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and hence the required expression given in (16). 
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Remark 3.1.   At 0j  in (16), we have 
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In view of Shawky and Bakoban (2008), by noting that 
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Making use of (24) in (23), we get 
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which is the exact expression for single moments from extended Erlang-truncated exponential distribution as 

obtained in (7). 

Corollary 3.1.  For 1k , in (16), the explicit expression for product moments of lower record values from 

extended Erlang-truncated exponential distribution has the form 
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. 

 Following Theorem contains the recurrence relations for product moments of k th lower record 

values from the extended Erlang-truncated exponential distribution. 

Before coming to the main result we shall prove the following Lemma. 

Lemma 3.1.  Fix a positive integer 1k , for 21  nm  and ,1,0, ji  
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Taking into account the value of (28) in (26), we find that 

 
)!1()!1(

])()[(])()[(
)(
1

)()()(




 mnm

k
ZZEZZE

n
jk

n
ik

m
jk

n
ik

m  

    dxdyyxh
y

y
xF

xf
xFx

x jmi
 












 

 
),(

)(

)(
)](ln[ 1 .                           (29) 

Now, in view of (27) 
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On substituting (30) in (29) and simplifying, the required result is obtained. 
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Theorem 3.2.  For the distribution given in (2) and 1m , km  and ,1,0, ji  
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and for 21  nm ,  ,1,0, ji  
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Proof.  On using (3) in Lemma 3.1, we have 
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and hence the result given in (32). 

Now putting 1mn  in (32) and noting that 
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Remark 3.2.  At 0i , Theorem 3.2 reduces to Theorem 2.2. 

Corollary 3.2.  The recurrence relation for product moments of lower record values from extended Erlang-

truncated exponential distribution has the form 
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IV. CHARACTERIZATION 

This section contains the characterizations of extended Erlang-truncated exponential distribution by 

using, recurrence relations, conditional expectation and truncated moments. 

Following Theorems contain characterizations of extended Erlang-truncated exponential distribution by 

recurrence relation for the single moments and conditional expectation of k th lower record values. 

Theorem 4.1.  Fix a positive integer 1k  and let j  be a non-negative integer, a necessary and sufficient 

condition for a random variable X  to be distributed with df  given by (2) is that 
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Proof.  The necessary part is proved in (14). On the other hand if the recurrence relation (33) is satisfied, then 

on using (4), we have 
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Integrating the left hand side of (37) by parts and using the value of )(xh  from (35), we find that 
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Now applying a generalization of the Müntz-Szász Theorem (see for example Hwang and Lin (1984)) to (38), 

we get 
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Integrating both the sides of (39) with respect to x  between ),0( y , the sufficient part is proved. 

Remark 4.1.  If 1k  in (33), we obtain the following characterization of the of extended Erlang-truncated 

exponential distribution based on lower records 
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Theorem 4.2.  Let X  be a non-negative random variable having an absolutely continuous df )(xF  with 
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Proof.  From (6), we have 
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(40) can be proved in view (12). 

To prove sufficient part, we have 
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Integrating both the sides of (44) with respect to x  between ),0( y , the sufficiency part is proved. 

Remark 4.2.  If 1k , in (40), we obtain the following characterization of the extended Erlang-truncated 

exponential distribution based on lower record values. 

 ln
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 Following Theorem contains characterization of extended Erlang-truncated exponential distribution by 

truncated moments. 

Theorem 4.3.  Suppose an absolutely continuous (with respect to Lebesgue measure) random variable X  has 

the df  )(xF  and pdf )(xf  for  x0 , such that )(xf   and )|( xXXE   exist for all x ,  x0 , then 
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Integrating (46) by parts, taking ')1(' 1)1()1(  

   ueue ee  as the part to be integrated and rest of the 

integrand for differentiation, we get 
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Multiplying and dividing by )(xf  in (47), we have the result given in (45).

 
To prove sufficient part, we have from (45) 
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Differentiating (48) on both sides with respect to x , we find that 
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where 
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Integrating both the sides in (49) with respect to x , we get 
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It is known that 
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