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ABSTRACT: For a connected graph G with a vertex set )(GV  and an edge set )(GE , the product 

connectivity Banhatti index of a graph G is defined as ,
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  where ue  means 

that a vertex u  and an edge e  are incident in G . In this paper, we determine the product 
connectivity Banhatti index of some cycle related and product related graphs. 
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I. INTRODUCTION  
 In this paper, we are interested with nontrivial, simple, connected, finite, undirected graphs. 

Let G  be a graph with a vertex set )(GV  and an edge set )(GE  with nGV |=)(|  and mGE |=)(| . The 

degree )(vdG  of a vertex v  is the number of edges incident to v  in G . The degree of an edge uve =  in G  

is defined by 2)()(=)(  vduded GGG . For undefined graph theoretic terminologies and notations, refer 

[6] or [7]. 
In chemical graph theory and in mathematical chemistry, a molecular graph or chemical graph is a 

representation of the structural formula of a chemical compound in terms of graph theory. A molecular graph is 
a graph whose vertices correspond to the atoms of the chemical compound and edges to the chemical bonds. 
Chemical graph theory is a branch of mathematical chemistry which has an important effect on the development 
of the chemical sciences. A single number that can be used to characterize some property of the graph of a 
molecule is called a topological index of that graph. There are numerous molecular descriptors, which are also 
referred to as topological indices, see [4], that have found some applications in theoretical chemistry, especially 
in QSPR/QSAR research. One of the best known and widely used topological index is the product connectivity 
index (or Randi𝑐́ index, connectivity index) by Randi𝑐́ [13], who has shown this index to reflect molecular 
branching.      
Motivated by Randi𝑐́ definition of the product connectivity index, the sum connectivity index was initiated by 

Zhou and Trinajsti𝑐́ [14] and [15], which is defined by .
)()(
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=)(
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GGGEuv 



  For more details 

on these type of connectivity indices, refer [1,3,12]. 

          The first and second K Banhatti indices of a graph G  are defined as )]()([=)(1 edudGB GG
ue

  and 

)],()([=)(2 edudGB GG
ue
  where ue  means that a vertex u  and an edge e  are incident in G . The K 

Banhatti indices were introduced by Kulli in [8]. The K Banhatti indices are closely related to Zagreb-type 
indices. For more details on these two type of indices, refer [5]. Recently, many other indices were also studied, 

for example [9] and [10]. Kulli et al. initiated the study of one more new topological index of a graph G  called 

as product connectivity Banhatti index [11] defined as ,
)()(
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  where ue  means that a 
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vertex u  and an edge e  are incident in G . The authors in [11] have computed expression for product 
connectivity Banhatti index of some standard class of graphs and have given some bounds for it. 
          The authors in paper [11] have considered only connected graphs. It is to be noted that this index gives an 

infinite value for 2KG  . 

The definition of product connectivity can be re-written as ,
)()(

1
=)(

edud
GPB

GGue
  where 2KG  . 

          The present article also gives an expression for product connectivity Banhatti index of some cycle related 
and product related graphs. 
 

II. PRODUCT CONNECTIVITY BANHATTI INDEX OF CYCLE RELATED GRAPHS 
 

For 4,n  the graph 11= KCW nn   is called a wheel graph.   

Theorem 2.1.  If nW  is a wheel of order n , then  
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Proof. The wheel nW  has n  vertices and 1)2( n  edges. By algebraic method, there are two types of edges 

based on the degree of the end vertices of each edge as follows:  

3}=)(3,=)(|)(  {=33 vdudWEuvE
nWnWn , 4,=)(uvd

nW  1|=| 33 nE , 

1}=)(3,=)(|)( {=1)3(  nvdudWEuvE
nWnWnn , ,=)( nuvd

nW  1|=| 1)3(  nE n . 

Now, by the definition of product connectivity Banhatti index of a graph we get 
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 The details of the following special graphs can be found in [2]. 
 

Let )(t
nC  denote the one-point union of 2t  cycles of length n . The graph )(

3
tC , is called a Friendship 

graph.   
 

Theorem 2.2.  If )(
3

tC  is a friendship graph of order 12 t , then  

 1.=)( )(
3  ttCPB t  

 

Proof. The graph )(
3

tC  of order 12 t  has two types of verices namely t2  vertices of degree 2  and 1 vertex 

of degree t2 . By algebraic method, there are two types of edges based on the degree of the end vertices of each 
edge as follows:  
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2}=)(2,=)(|)( {= )(
3
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t  , ,2=)()(

3
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 tE n 2|=| 2 . 

 
From the definition of product connectivity Banhatti index of a graph and above data we get, 
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 The double cone 12= KCDC nn   is a graph with 2n  vertices and n3  edges.   

 

Theorem 2.3.  If nDC  is a double cone of order 2n  and size n3 , then  
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Proof. The double cone is a graph of order 2n  and size n3 . By algebraic method, there are two types of 
edges based on the degree of the end vertices of each edge as follows:  

}=)(4,=)(|)(  {=4 nvdudDCEuvE
nDCnDCnn  , 2,=)( nuvd

nDC  nE n 2|=| 4 , 

4}=)(4,=)(|)({=44 vdudDCEuvE
nDCnDCn , 6,=)(uvd

nDC  nE |=| 44 . 

 
 The definition of product connectivity Banhatti index of a graph along with the above data gives, 
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 The helm nH  is a graph obtained from a wheel nW  by attaching a pendant edge at each vertex of a cycle nC .   

Theorem 2.4.  If the graph nH  is a helm of order 12 n , then  
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Proof. The helm nH  is a graph of order 12 n  and size 1)3( n . By algebraic method, there are three types 

of edges based on the degree of the end vertices of each edge as follows:  

4}=)(4,=)(|)( {=44 vdudHEuvE
nHnHn , 6,=)(uvd

nH  1|=| 44 nE , 

1}=)(4,=)(|)({=1)4(  nvdudHEuvE
nHnHnn , 1,=)( nuvd

nH  1|=| 1)4(  nE n , 

4}=)(1,=)(|)(  {=14 vdudHEuvE
nHnHn , 3,=)(uvd

nH  1|=| 14 nE . 

 
The definition of product connectivity Banhatti index of a graph shows, 
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 The closed helm '
nH  is a graph obtained from a helm nH  by joining each pendant vertex to form a cycle.   

 

Theorem 2.5.  If the graph '
nH  is a closed helm of order 12 n , then  
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Proof. The closed helm '
nH  is a graph of order 12 n  and size 1)4( n . By algebraic method, there are four 

types of edges based on the degree of the end vertices of each edge as follows:  

4}=)(4,=)(|)( {= ''
'

44 vdudHEuvE
nHnHn , 6,=)(' uvd

nH
 1|=| 44 nE , 
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 1|=| 33 nE . 

The definition of product connectivity Banhatti index of a graph gives, 
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The gear graph nG  is a graph obtained from a wheel nW  by adding a vertex between every pair of adjacent 

vertices of the cycle 1nC .   

 

Theorem 2.6.  If the graph nG  is a gear graph of order 12 n , then  
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Proof. The gear graph nG  is a graph of order 12 n  and size 1)3( n . By algebraic method, there are two 

types of edges based on the degree of the end vertices of each edge as follows:  
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By the definition of product connectivity Banhatti index of a graph we have, 
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The flower graph nFl  is a graph obtained from a helm by joining each pendant vertex to a central vertex of the 

helm.   
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Theorem 2.7.  If the graph nFl  is a flower of order 12 n , then  
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Proof.  The flower graph nFl  is a graph of order 12 n  and size 1)4( n . By algebraic method, there are 

four types of edges based on the degree of the end vertices of each edge as follows:  
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By the definition of product connectivity Banhatti index of a graph we have, 
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 The sunflower graph nSF  is a graph obtained from a wheel with central vertex c , n -cycle 110 ,...,, nvvv  and 

additional n  vertices 110 ,...,, nwww  where iw  is joined by edges to 1, ii vv  for 10,1,...,= ni  where 

1i  is taken modulo .n    
 

Theorem 2.8.  If the graph nSF  is a sunflower of order 12 n , then  
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Proof. The sunflower graph nSF  is a graph of order 12 n  and size n4 . By algebraic method, there are three 

types of edges based on the degree of the end vertices of each edge as follows:  

}=)(5,=)(|)({=5 nvdudSFEuvE
nSFnSFnn  , 3,=)( nuvd

nSF  nE n |=| 5 , 
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5}=)(5,=)(|)(  {=55 vdudSFEuvE
nSFnSFn , 8,=)(uvd

nSF  nE |=| 55 , 

2}=)(5,=)(|)( {=52 vdudSFEuvE
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nSF  nE 2|=| 52 . 

 The definition of product connectivity Banhatti index of a graph and above data together gives, 
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The graph 1= KPF nn   is called a fan graph, where nn uuuP ...: 21  is a path.   

 

Theorem 2.9.  If the graph nF  is a fan graph of order 1n , then  
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Proof. The fan graph nF  is a graph of order 1n  and size 12 n . By algebraic method, there are four types 

of edges based on the degree of the end vertices of each edge as follows:  

}=)(2,=)(|)(  {=2 nvdudFEuvE
nFnFnn  , ,=)( nuvd

nF  2|=| 2nE , 

3}=)(2,=)(|)( {=23 vdudFEuvE
nFnFn , 3,=)(uvd

nF  2|=| 23E , 

3}=)(3,=)(|)({=33 vdudFEuvE
nFnFn , 4,=)(uvd

nF  3|=| 33 nE , 

}=)(3,=)(|)({=3 nvdudFEuvE
nFnFnn  , 1,=)( nuvd

nF  2|=| 3 nE n . 

The definition of product connectivity Banhatti index of a graph gives, 
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 The graph 12= kPDF nn   is called a double fan.   

 

Theorem 2.10.  If the graph nDF  is a double fan graph of order 2n , then  
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Proof. The double fan graph nDF  is a graph of order 2n  and size 13 n . By algebraic method, there are 

four types of edges based on the degree of the end vertices of each edge as follows:  

}=)(3,=)(|)({=3 nvdudDFEuvE
nDFnDFnn  , 1,=)( nuvd

nDF  4|=| 3nE , 

4}=)(3,=)(|)({=34 vdudDFEuvE
nDFnDFn , 5,=)(uvd

nDF  2|=| 34E , 

}=)(4,=)(|)({=4 nvdudDFEuvE
nDFnDFnn  , 2,=)( nuvd

nDF  42|=| 4 nE n , 

4}=)(4,=)(|)({=44 vdudDFEuvE
nDFnDFn , 6,=)(uvd

nDF  3|=| 44 nE . 

From the definition of product connectivity Banhatti index of a graph we arrive at the following. 
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III. PRODUCT CONNECTIVITY BANHATTI INDEX OF PRODUCT RELATED GRAPHS 

 

 The graph 2PSm   (where mS  is a star with 1m  vertices) is called a book graph mB .   

Theorem 3.1.  If the graph mB  is a book graph, then  
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Proof. The book graph mB  is a graph of order 22 m  and size 13 m . By algebraic method, there are three 

types of edges based on the degree of the end vertices of each edge as follows:  

2}=)(2,=)(|)(  {=22 vdudBEuvE
mBmBm , 2,=)(uvd

mB  mE |=| 22 , 

1}=)(2,=)(|)({=1)2(  mvdudBEuvE
mBmBmm , 1,=)( muvd

mB  mE m 2|=| 1)2(  , 

1}=)(1,=)(|)( {=1)1)((  mvdmudBEuvE
mBmBmmm , ,2=)( muvd

mB      

             1|=| 1)1)((  mmE . 

 
From  the definition of product connectivity Banhatti index of a graph we have, 
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 The graph 12= tKPBt   where 1t  is called a book with triangular pages.   
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Theorem 3. 2.  If tB  is a book with triangular pages, then  
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Proof. The book tB  with triangular pages has order 2t  and size 12 t . By algebraic method, there are two 

types of edges based on the degree of the end vertices of each edge as follows:  

1}=)(1,=)(|)( {=1)1)((  tvdtudBEuvE
tBtBttt , ,2=)( tuvd

tB  1|=| 1)1)((  ttE , 

1}=)(2,=)(|)({=1)2(  tvdudBEuvE
tBtBtt , 1,=)( tuvd

tB  tE t 2|=| 1)2(  . 

 
Taking the definition of product connectivity Banhatti index of a graph and above data we have, 
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 The graph nm PPG =  is called a planar grid.   

 

Theorem 3.3.  Let G  be a planar grid, then  
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Proof. The planar grid G  is a graph of order mn  and size 1)(1)(  mnnm . By algebraic method, there 

are four types of edges based on the degree of the end vertices of each edge as follows:  

3}=)(2,=)(|)( {=23 vdudGEuvE GG , 3,=)(uvdG  8|=| 23E , 

3}=)(3,=)(|)( {=33 vdudGEuvE GG , 4,=)(uvdG  3)2(3)2(|=| 33  mnE , 

4}=)(3,=)(|)({=34 vdudGEuvE GG , 5,=)(uvdG  2)2(2)2(|=| 34  nmE , 

4}=)(4,=)(|)({=44 vdudGEuvE GG , 6,=)(uvdG  12)5(2|=| 44  nmmnE . 

By the definition of product connectivity Banhatti index of a graph we have, 
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 The graph 2PPn   is called a ladder graph nL .   

Theorem 3.4.  If nL  is a ladder graph, then  
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Proof. The ladder graph nL  is a graph of order n2  and size 23 n . By algebraic method, there are three 

types of edges based on the degree of the end vertices of each edge as follows:  

2}=)(2,=)(|)(  {=22 vdudLEuvE
nLnLn , 2,=)(uvd

nL  2|=| 22E , 

3}=)(2,=)(|)({=23 vdudLEuvE
nLnLn , 3,=)(uvd

nL  4|=| 23E , 

3}=)(3,=)(|)({=33 vdudLEuvE
nLnLn , 4,=)(uvd

nL  83|=| 33 nE . 

 
The definition of product connectivity Banhatti index of a graph and above data gives,  
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The graph 1= KPH n   is called a comb graph. 

  
Theorem 3.5.  If H  is a comb graph, then  
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Proof. The comb H  is a graph of order n2  and size 12 n . By algebraic method, there are four types of 
edges based on the degree of the end vertices of each edge as follows:  

2}=)(1,=)(|)( {=12 vdudHEuvE HH , 1,=)(uvdH  2|=| 12E , 

3}=)(1,=)(|)(  {=13 vdudHEuvE HH , 2,=)(uvdH  2|=| 13 nE , 

3}=)(2,=)(|)( {=23 vdudHEuvE HH , 3,=)(uvdH  2|=| 23E , 

3}=)(3,=)(|)({=33 vdudHEuvE HH , 4,=)(uvdH  3|=| 33 nE . 

 
Now, by the definition of product connectivity Banhatti index of a graph we have 
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 The graph 12= KPX n   is called a double comb graph. 

  
Theorem 3.6.  If X  is a double comb graph, then  
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Proof. The double comb X  is a graph of order n3  and size 13 n . By algebraic method, there are four types 
of edges based on the degree of the end vertices of each edge as follows:  

3}=)(1,=)(|)( {=13 vdudXEuvE XX , 2,=)(uvdX  4|=| 13E , 

4}=)(1,=)(|)( {=14 vdudXEuvE XX , 3,=)(uvdX  42|=| 14 nE , 

4}=)(3,=)(|)({=34 vdudXEuvE XX , 5,=)(uvdX  2|=| 34E , 

4}=)(4,=)(|)( {=44 vdudXEuvE XX , 6,=)(uvdX  3|=| 44 nE . 

 
Now, by the definition of product connectivity Banhatti index of a graph we have 
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 The graph 1KCn   is called a crown graph.   

 
Theorem 3.7.  If A  is a crown graph, then  
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Proof. The crown graph has n2  vertices and n2  edges. By algebraic method, there are two types of edges 
based on the degree of the end vertices of each edge as follows:  

3}=)(1,=)(|)({=13 vdudAEuvE AA , 2,=)(uvdA  nE |=| 13 , 

3}=)(3,=)(|)( {=33 vdudAEuvE AA , 4,=)(uvdA  nE |=| 33 . 

 
The definition of product connectivity Banhatti index of a graph gives, 
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 Two even cycles of the same order, say nC , sharing a common vertex with m  pendant edges attached at the 

common vertex is called a butterfly graph .,nmBy    

 

Theorem 3.8.  If nmBy ,  is a butterfly graph, then  
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Proof. The graph nmBy ,  has 12 mn  vertices and mn2  edges. By algebraic method, there are three 

types of edges based on the degree of the end vertices of each edge as follows:  
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          4|=| 4)2( mE , 

1}=)(4,=)(|)({=
,,,4)1( vdmudByEuvE
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,
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          mE m |=| 4)1(  . 

 
Considering the definition of product connectivity Banhatti index of a graph along with above data we get, 
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The triangular snake nT  is obtained from the path nP  by replacing each edge of a path by a triangle 3C .   

Theorem 3.9.  If nT  is a triangular snake, then  
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Proof. The graph nT  has 12 n  vertices and 1)3( n  edges. By algebraic method, there are three types of 

edges based on the degree of the end vertices of each edge as follows:  

2}=)(2,=)(|)({=22 vdudTEuvE
nTnTn , 2,=)(uvd

nT  2|=| 22E , 
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nT  1)2(|=| 24 nE , 

4}=)(4,=)(|)(  {=44 vdudTEuvE
nTnTn , 6,=)(uvd

nT  3|=| 44 nE . 

 
In view of the definition of product connectivity Banhatti index of a graph and above data we can write,  
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 The alternate triangular snake )( nTA  is obtained from the path nn uuuP ...,: 21  by joining iu  and 1iu  

(alternatively) to new vertex iv . That is every alternate edge of a path is replaced by a triangle 3C .   

Theorem 3.10.  If )( nTA  is an alternate triangular snake, then  
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Proof. The graph )( nTA  has n2  vertices and 12 n  edges. By algebraic method, there are three types of 

edges based on the degree of the end vertices of each edge as follows:  
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By the definition of product connectivity Banhatti index of a graph we have the following. 
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IV. CONCLUSION 
In this paper, we have made an important observation that the product connectivity Banhatti index 

cannnot be applied for P2 (considering the connected graphs). We have also computed the expression for 
product connectivity Banhatti index of few graphs obtained by some graph operations. Finding the product 
connectivity Banhatti index of graph operations in general which is a complicated task remains as an open 
problem. 
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