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Abstract:Many researchers have developed numerical techniques to solve initial value problems of ordinary 

differential equations since its discovery by Leonard Euler in 1768. Some have tried to improve on existing 

methods and their efficiencies such as stability, accuracy, convergence, and consistency. This paper examines 

the Adomian Decomposition Method for the solution of second-orderautonomous and non-autonomous ordinary 

differential equations. The results from the two numerical problems used shows that the Adomian 

Decomposition Method is almost the same as the theoretical solutions. These results obtained indicate that the 

method is efficient, reliable, and computationally stable. 
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I. INTRODUCTION 
 It is a well-known fact that Differential Equations are among the most mathematical tools used in 

producing models in the engineering, mathematics, physics, aeronautical, elasticity, astronomy, dynamics, 

biology, chemistry, medicine, environmental sciences, econometrics, social sciences, banking and many other 

areas [1]. Many researchers have studied the nature of Differential Equations and many complicated systems 

that can be described quite precisely with mathematical expressions. It is very important to note that many 

differential equations cannot be solved algebraically (analytically) [2]. This means that the solution cannot be 

expressed as the sum of a finite number of elementary functions (polynomials, exponentials, trigonometric, and 

hyperbolic functions). Sometimes, it is possible to find an algebraic solution, but we may be faced with a system 

of thousands, even millions of differential equations. For simple differential equations, it is possible to find 

closed form solutions [3]. 

 Historically, the ancestor of all numerical methods in use today was developed by Leonhard Euler 

between 1768 and 1770 [4]. The famous of Euler was republished in his collected works in 1913 [5]. Recalled 

the initial value problem 

y′ = f x, y ,         y a = η.       

Of all the computational methods for the numerical solution of this problem, the easiest to implement is Euler’s 

rule [1], 

yn+1 − yn=hf  xn ,yn  
≡ hfn ,     n = 1, 2, ⋯ , m   

where the step size h = xn+1 − xn  . 

 Since then, many authors have worked to improve on the Euler’s methods because of its ease of 

implementation, others have advanced additional methods; among which are: Adams-Bashforth-Moulton 

methods, Nystrom type methods, the self-starting Runge-Kutta type method which involves several function 

evaluation per-step, Improved Euler method, the Linear multistep  method, Taylor series method, Explicit Euler 

method, Hybrid method, Extrapolation method, Cyclic Composite Method, Methods for Stiff problems, Power 

Series Method and Block Procedure. From literature, theses numerical methods are suitable for solving some 

sets of initial value problems in ODEs. 

 The efficiency of any method in numerical analysis depends on the stability (zero-stability, weak-

stability, absolute-stability), accuracy, convergence and consistency properties of the method. The accuracy 

properties of the different methods are usually compared by considering the order of convergence, truncation 

error coefficients, and computational simplicity as well as inexpensive of the method and effective for a wide 

range of ODEs.Among researchers that have developed numerical schemes for solving initial value problems 

are: [6, 7, 2, 8, 9, 10, 11]. 
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 The Adomian Decomposition Method is a semi-analytical method for solving linear or nonlinear and 

deterministic or stochastic operator equations, including ODEs, partial differential equations (PDEs), integral 

equations, integro-differential equations, etc. The method was developed from the 1970s to the 1990s by George 

Adomian, chair of the Center for Applied Mathematics at the University of Georgia. The method generates a 

solution in the form of a series whose terms are determined by a recursive relationship using the Adomian 

Polynomials. According to [12], researchers who have used the ADM have frequently enumerated on the many 

advantages it offers. The Adomian decomposition method yields an efficient numerical solution with high 

degree accuracy. It enables the accurate and efficient analytical solution of the nonlinear differential equation 

without the need to resort to linearization or perturbation approaches. The method consists of splitting the given 

equation into linear and non-linear parts, the highest order derivative operator contained in the linear operator is 

inverted on both sides, the known function is decomposed into a series whose components can be easily 

computed. 

 However, from the time it was first presented, the ADM has led to several modifications on the method 

by various researchers in an attempt to improve the accuracy or expand the application of the original method. 

See [13, 14, 15, 16, 17].We shall proceed to discuss the basic theory and concepts of ADM with some numerical 

examples. 

 

II. THE ADOMIAN DECOMPOSITION METHOD 
We begin by giving a brief outline of the method. 

If we begin with the equation 

F = g      (1) 

whereF represents the general nonlinear ordinary differential operator involving both linear and nonlinear terms. 

The linear term is decomposedintoL + R, where L  is easily invertible and R  is the remainder of the linear 

operator of the order less than L as L may be taken as the highest order derivative. Thus, the equation may be 

written 

Ly + Ry + Ny = g(x)    (2) 

whereNy  represent the nonlinear terms solving for Ly  by making it subject of the formula, we get 

Ly = g x − Ry − Ny     (3) 

By solving (3) for Ly , since L is invertible, we can write 

L−1Ly = L−1g x − L−1Ry − L−1Ny    (4) 

For the initial value problems, we conveniently define L−1 for L =
dn

dxn   as the n − fold definite integration from 

0 tox (i.e. L−1Ly = y − y x0 − (x − x0)y′(x0)). If L is a second order operator L is a two-fold integral and so 

by solving (4) we get 

y = A + Bx + L−1g x − L−1Ry− L−1Ny              (5) 

whereA and B are constants of integrations and can be found from the initial boundary conditions. 

The Adomian method consists of approximating the solution of (2) as an infinite series 

y x =  yn(x)

∞

n=0

                (6) 

And decomposing the nonlinear operator Ny into a series 

N y =  An

∞

n=0

                                    (7) 

Where An , depending on y0 , y1, y2,⋯ yn , are called the Adomian polynomials, and are obtained for the 

nonlinear Ny − g(y) by the definitional formula [Adomian 1983]  

An =
1

n!

dn

dλn
 N  λiyi

n

i=0

  

λ=0

, n = 0, 1, 1, 2,…             (8) 

Substituting (7) and (8) into (6), yields 

 yn = φ0 + L−1g x − L−1R  yn

∞

n=0

 − L−1   An

∞

n=0

 

∞

n=0

   (9) 

where, 
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φ0 =

 
 
 
 

 
 
 y 0 ,                                                                        ifL =

d

dx
,

y 0 + xy′ 0 ,                                                       ifL =
d2

dx2 ,

y 0 + xy′ 0 +
x2

2!
y′′(0),                                 ifL =

d3

dx3 ,

⋮

y 0 + x′ 0 +
x2

2!
y"(0) + ⋯

xn

n!
yn(0),       ifL =

dn +1

dxn +1

   (10) 

Therefore 

 
 
 

 
 

y0 = φ0 + L−1g x ,                               

y1 = −L−1Ry0 − L−1A0

y2 = −L−1Ry1 − L−1A1,                         
⋮

yn+1 = −L−1Ryn − L−1An , n ≥ 0,     

      (11) 

We write the first five Adomian polynomials 

 
 
 
 

 
 
 

A0 = N y0 ,

A1 = y1N′ y0 ,

A2 = y2N′ y0 +
1

2!
y1

2N′′(y0),

A3 = y3N′ y0 + y1y2N"(y0) +
1

3!
y1

3N′′′(y0),

A4 = y4N′ y0  
1

2!
y1

2 + y1y3 N′′ y0 +
1

2!
y1

2y2N′′′ y0 +
1

4!
y1

2N′′′′(y0)

⋮

  (12) 

So, the practical solution for the n terms approximation is  

 

y = lim
n=∞

Φn(y)                                    (13) 

Φn y =  yi

n−1

i=0

                        (14)  

 

III. NUMERICAL EXAMPLES AND RESULTS OF ADOMIAN DECOMPOSITION 

METHOD 

 In this section, we applied the ADM to solve two sample problems in ODEs and their numerical results 

are illustrated. In each problem, only the first ten terms of the decomposition series will be used in computing 

the results. 

 

Problem 1: 

We consider the second order differential equation of the form 

y" − y = 2,    y 0 = 0, y′ 0 = 1           xϵ[0,6]         (15) 

With the theoretical solution: 

y x =
3

2
ex +

1

2
e−x − 2 

We apply the ADM operator to equation (15) to produce  

Ly" = 2 + y         (16) 

L =
d2y

dx2
 

The inverse operator 

L−1 =   (. )
x

0

x

0

dxdx 

Applying L−1 to both side of (16) and impose the boundary conditions, we obtain  

y x = y 0 + y′ 0 + L−1 2 + L−1(y)    (18) 

By using (9), we have 

y x = x + 2  dxdx +    yn

∞

n=0

x

0

x

0

x

0

x

0

           (19) 

The ADM introduces the recursive relation 

y0 x = x + L−1 2 + L−1 y = x + x2 

yn+1 = L−1 yn n ≥ 0 
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We can then proceed to compute the first few terms of the series: 

y1 x = L−1 y0 =     x + x2 dxdx =
x3

6
+

x4

12

∞

n=0

x

0

x

0

 

y2 x = L−1 y1 =    
x3

6
+

x4

12
 dxdx =

x5

120
+

x6

360

x

0

x

0

 

𝑦3 𝑥 = 𝐿−1 𝑦2 =    
𝑥5

120
+

𝑥6

360
 𝑑𝑥𝑑𝑥 =

𝑥7

5040
+

𝑥8

20,160

𝑥

0

𝑥

0

 

𝑦4 𝑥 = 𝐿−1 𝑦3 =   
𝑥7

5040
+

𝑥8

20,160
𝑑𝑥𝑑𝑥 =

𝑥9

362,880
+

𝑥10

1,814,400

𝑥

0

𝑥

0

 

𝑦5 𝑥 = 𝐿−1 𝑦4 =   
𝑥9

362,880
+

𝑥10

1,814,400
𝑑𝑥𝑑𝑥 =

𝑥11

39,916,800
+

𝑥12

239,500,800

𝑥

0

𝑥

0

 

- 

- 

- 

𝑦𝑛 𝑥 =
𝑥(2𝑛+1)

 2𝑛 + 1 !
+

2 . 𝑥 2𝑛+2 

 2𝑛 + 2 !
                                                       (20) 

Hence, 

𝛷10 𝑥 =  𝑦𝑛 𝑥                                                                               (21)

9

𝑛=0

 

 

 When 𝑛 = 10 in this case, the results of the difference between the exact solution and the ADM 

solution along-side the Absolute error, 𝐸𝐴  using a step size of 1 is as shown as in Table 1. Obviously, the results 

are in agreement with the exact solution and higher accuracy can be obtained by evaluating more components of 

the series (21). 

 

Table I:  Exact versus ADM solution of example 1 with step size of 0.5 
𝑋 Exact Solution Solution with ADM Absolut Error 𝐸𝐴 

0.5 0.77634723591 0.77634723591 0.00000000000 

1.0 2.26136246327 2.26136246327 0.00000000000 

1.5 4.83409868558 4.83409868558 0.00000000000 

2.0 9.15125179001 9.15125179001 0.00000000000 

2.5 16.31478344037 16.31478344036 0.00000000001 

3.0 28.15319891897 28.15319891870 0.00000000027 

3.5 47.68827662975 47.68827662271 0.00000000704 

4.0 79.90638286916 79.90638274805 0.00000012111 

4.5 133.03125144905 133.03124995196 0.00000149709 

5.0 220.62310762736 220.62309337112 0.00001425624 

5.5 365.03994178205 365.03983185037 0.00010993168 

 

With a step size of 0.1, we obtain a similar result as shown in table II 

Table II: Exact versus ADM solution of example 1 with step size of 0.1 
𝑋 Exact Solution Solution with ADM Absolut Error 𝐸𝐴 

0.1 0.11017508613 0.11017508613 0.00000000000 

0.2 0.24146951378 0.24146951378 0.00000000000 

0.3 0.39519732170 0.39519732170 0.00000000000 

0.4 0.57289706948 0.57289706948 0.00000000000 

0.5 0.77634723591 0.77634723591 0.00000000000 

0.6 1.007584018633 1.00758401863 0.00000000000 

0.7 1.26892171310 1.26892171310 0.00000000000 

0.8 1.56297587480 1.56297587480 0.00000000000 

0.9 1.89268949661 1.89268949661 0.00000000000 

1.0 2.26136246327 2.26136246327 0.00000000000 

1.1 2.67268457777 2.67268457777 0.00000000000 

 

Problem 2: 

We consider the second order differential equation of the form 

𝑦′′ + 𝑦 = 0,     𝑦 0 = 2,     𝑦′ 0 = 3,        𝑥 ∈  0,4                          (22) 

The exact solution of (22) is 𝑦 𝑥 = 2 𝑐𝑜𝑠 𝑥 + 3 𝑠𝑖𝑛 𝑥. In an operator form, (22) becomes  

𝐿𝑦 = −𝑦     (23)             
𝑦(𝑥) = 𝑦(𝑜) + 𝑥𝑦′(0) − 𝐿−1(𝑦) 
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𝑦 𝑥 = 2 + 3𝑥 − 𝐿−1(𝑦) 

 
𝑦0 𝑥 = 2 + 3𝑥

𝑦𝑛+1 = −𝐿−1 𝑦𝑛 ,        𝑛 ≥ 0
     (24) 

y1 x = −   2 + 3x dxdx
x

0

x

0

= −x2 −
x3

2
 

y2 x = −   −x2 −
x3

2
 dxdx

x

0

x

0

=
x4

12
+

x5

40
 

 

y3 x = −   
x4

12
+

x5

40
 dxdx

x

0

x

0

= −
x6

360
−

x7

1,680
 

y4 x = −   −
x6

360
−

x7

1,680
 dxdx

x

0

x

0

=
x8

20,160
+

x9

120,960
 

 

y5 x = −   
x8

20,160
+

x9

120,960
 dxdx

x

0

x

0

= −
x10

1,814,400
−

x11

13,305,600
 

- 

- 

- 

yn(x) = (−)n  
2x2n

(2n)!
+

3x(2n+1)

 2n + 1 !
  

Consequently, 

Φ15 x =  yn x                                                                               (25)

14

n=0

 

 

 Here, we use only the first fourteen terms in evaluating the approximate solution of equation (22). The 

exact solution and the ADM solution with various step sizes with the EA  is as given in table III and table IV 

respectively. However, the results of the ADM are almost the same as the exact solution. 

 

Table III: Exact versus ADM solution of example 1 with step size of 0.2 
X Exact Solution Solution with ADM Absolut Error EA  

0.2 2.556141148067667 2.556141148067667 0.000000000000000 

0.4 3.010377014931722 3.010377014931722 0.000000000000000 

0.6 3.344598650004463 3.344598650004463 0.000000000000000 

0.8 3.545481691392899 3.545481691392899 0.000000000000000 

1.0 3.605017566159969 3.605017566159969 0.000000000000000 

1.2 3.520832766855026 3.520832766855026 0.000000000000000 

1.4 3.296283475765863 3.296283475765862 0.000000000000001 

1.6 2.940321764521938 2.940321764521938 0.000000000000000 

1.8 2.467138703248411 2.467138703248412 0.000000000000001 

2.0 1.895598607382760 1.895598607382760 0.000000000000000 

2.2 1.248486976948079 1.248486976948079 0.000000000000000 

 

Table IV: Exact versus ADM solution of example 1 with step size of 0.3 
X Exact Solution Solution with ADM Absolut Error EA  

0.3 2.797233598235231 2.797233598235231 0.000000000000000 

0.6 3.344598650004463 3.344598650004463 0.000000000000000 

0.9 3.593200665423779 3.593200665423779 0.000000000000000 

1.2 3.593200665423779 3.520832766855026 0.000000000000003 

1.5 3.133959363147569 3.133959363147569 0.000000000000000 

1.8 2.467138703248411 2.467138703248412 0.000000000000001 

2.1 1.579935890746906 1.579935890746906 0.000000000000000 

2.4 0.551602110570962 0.551602110570962 0.000000000000000 

2.7 -0.526004643332633 -0.526004643332633 0.000000000000000 

3.0 -1.556624969021289 -1.556624969021289 0.000000000000000 

3.3 -2.448196622247474 -2.448196622247475 0.000000000000001 
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Figure 1: Exact solution of problem 1 

 
 

Figure 2: ADM solution of problem 1 

 
 

Figure 3: Exact solution of problem 2 

 
 

Figure 4: ADM solution of problem 2. 
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IV. DISCUSSION OF RESULTS 
 From the tables above, we can clearly see that the ADM is almost the same as the exact solution. 

Hence, the results presented here show that the method is reliable, accurate and converges very rapidly. 

 

V. CONCLUSION 
 In this paper, we used the ADM to solve second orderautonomous and non-autonomous ordinary 

differential equations. Problem 1 is a non-autonomous ordinary differential equation while problem 2 is an 

autonomous ordinary differential equation. The ADM generates its solutions in the form of series and the round 

off errors inherited by taken a finite series from the infinite series.  We observed that better accuracy can be 

obtained by accommodating more terms from the decomposition series and the solutions presented problems is 

stable and consistent in the interval a ≤ x ≤ b. We compared the numerical and the theoretical results and it 

shows that the ADM is almost the same as the exact solution. Hence, the ADM is very reliable, efficient, 

computational stable and promising. In our subsequent research, we shall examine the comparison with other 

existing methods. 
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