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ABSTRACT:In this paper, three existing methods used to estimate the degree of smoothness of a Spline 

Smoothing techniques was compared with a proposed smoothing method for a time series data under the 

assumption that the error terms are independent. The intention is to investigate the method that is most effective 

and consistent in estimating smoothing parameters, a simulation program written in R provides a comparison 

for GCV, GML, UBR and the proposed method, based on sample 20, 60 and 100, for four smoothing parameters 

1, 2, 3 and 4 under two sigma levels i.e. 0.8 and 1.0. It was discovered that when the sample size is small (n = 

20), UBR and GCV were equally preferred and for n = 60 and 100 at smoothing parameters (λ = 1, 2, 3 and 4) 

UBR method was the best for estimating the degree of smoothness. 
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I. INTRODUCTION 
 Non parametric regression is a type of Regression analysis where the predictor does not take a 

predetermined form but relies on information collected from the observation. The nonparametric regression can 

be used to estimate a regression curve by providing a broad based method of exploring the relationship between 

two variables, it can also be used for predictions of observations yet to be made without reference to a fixed 

parametric model. It can provides a techniques for spurious observations by studying the influence of isolated 

points, it constitutes a flexible method of substituting missing values or interpolating between adjacent X-

values.  The general spline smoothing model is given as: 

  iii Xfy 
(1)  

Where; yi is the observation values of the response variable y, f is an unknown smoothing function, Xi is the 

observation values of the predictor variable x and εi is normally distributed random errors with zero mean and 

constant variance. 

The main objective of this research is to estimate f (.) when xi = ti but not necessarily equally spaced, with t1< . . 

. <tn(time) and εi is assumed to be correlated. [6]. Therefore, this research shall consider the spline smoothing 

for non-parametric estimation of a regression function in a time-series context with the model; 

  tiii tfy 
(2)  

Where; yi = observation values of the response variable y, f = an unknown smoothing function, ti = time for i = 1 

. . . n, εti = zero mean autocorrelated stationary process. 

Smoothing spline arises as the solution to a nonparametric regression problem having the function f(x) with two 

continuous derivatives that minimizes the penalized sum of squares 

S f  =    yi − f xi  
2

 +  λ  f II x  
2

dx                                                                           (3)
1

0

n

i−1

 

 

Where; λ is the smoothing parameter, the first term in the equation is the residual sum of square, the second 

term is a roughness penalty, which is large when the integrated second derivative of regression function f II x  is 

large when f(x) is rough (i.e. with rapidly changing slope). The parameter λ controls the trade-off between 

goodness-of-fit and the smoothness of the estimate and is often referred to as the smoothing parameter. If λ is 0 

then f(x) simply interpolates the data, if λ is very large, then f x will be selected so that f II x  is everywhere, 

which implies a globally linear least-squares fit to all data. There is the need to tackle the problem associated 
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with estimating the best spline smoothing methods for time series observation when the error term is 

independently identically distributed. 

 There are vast literatures on Spline Smoothing modeling of correlational observations; [19], [10], [23], 

[18], [20], [3], [14], [4], [7], [9], [16], [8], [15], [21], [10], [13], [5], [2], [11] and [1]. 

 This paper aim to propose a new smoothing method (PSM) by modifying two of the existing Spline 

Smoothing methods (i.e. the Generalized Cross Validation (GCV) and Unbiased Risk (UBR) and compare its 

efficiency and performance with three existing estimation methods namely; Generalized Maximum Likelihood 

(GML), Generalized Cross Validation (GCV) and Unbiased Risk (UBR). Spline smoothing estimation methods 

for time series observation were discussed in section one. Section two reviews the existing spline smoothing 

method and the proposed selection method, Section 3presents the Monte Carlo simulation study, equation used 

for generating values in simulation and experimental design and data generation, section four compares the four 

methods via a simulation study, and finally, the result discussion and conclusion were presented in last section. 

 

II. ESTIMATION OF PARAMETERS 

2.1 Generalized Cross-Validation (GCV) estimate method: 

 The term Generalized Cross-Validation (GCV) was coined by [16] and was applied by [22], [2]. The 

GCV score which is constructed by analogy to CV score can be obtained from the ordinary residuals by dividing 

by the factors1 −  Sλ ii . The underlying design of GCV is to replace the factors 1 −  Sλ ii  in equation (4) with 

the average score1 −
1

n
tr Sλ . Thus, by summing the squared corrected residual and factor{1 −

1

n
tr Sλ }2 , 

based on the analogy of Ordinary Cross-Validation, the GCV score function can be written mathematically as; 

GCV (λ)  =  
1

n

  yi − f λ xi  
2n

i=1

 1 − 1

n
Trace  Sλ   

2   =    
1

n
 (I−Sλ )y 2

 1

n
trace  I−Sλ   

2 (4) 

Where; n is the pairs of measurement/observations {xi,yi}, λ is the Smoothing parameters and Sλ is the ith 

diagonal element of smoother matrix 

 

2.2 Generalized Maximum Likelihood (GML) estimate method 

A Bayesian model provides a general framework for the GML method and can be used to calculate the posterior 

confidence intervals of a spline estimate. It is defined as; 

GLM (λ)  =  
yI I − Sλ y

[det+(I − Sλ)]
1

n−m

(5) 

Where; Det
+
 is the product of the nonzero eigenvalues, y

I
 is the estimate of y is smoothing parameter, Sλ is the 

diagonal element of smoother matrix, n is the pairs of measurement/observations {xi,yi}and m is  number of 

zero eigenvalues 

 

2.3 Unbiased Risk (UBR) estimate method 

 The UBR method or CP criterion was suggested by [12] and had been applied successfully by Craven 

and [17],[24], [19]; [6] and [22] for selecting smoothing parameters for spline estimates with non-Gaussian data. 

It is written as; 

UBR (λ)  =  
1

n
   Sλ −  1 y 2  +  2σ2tr Sλ − σ2  

UBR (λ)  =  
1

n
   y − f λ y 

2
 +  2σ2tr Sλ − σ2  

UBR (λ)  =  
1

n

  yi − f λ  xi  
2n

i=1

tr I −  Sλ   
2   =    

 (Sλ −I)y 
2

tr I − Sλ  
(6) 

Where; y is the Smoothing parameter, Sλ is the ith diagonal element of smoother matrix, n is the pairs of 

measurement/observations {xi,yi} 

2.4 Proposed Smoothing Method (PSM) with Autocorrelation Structure 

PSM λ  =  
 (I−Sλ )y 2

1

n
tr(I − Sλ) (Sλ − I)y 2

(7) 

Where; n is Pairs of observation and Sλis the diagonal element of smoother matrix 

 

III. MATERIALS AND METHODS 
 A simulation study is conducted to evaluate and compare the performance of the four estimation 

methods presented in previous sections. The model considered is; 

y t  =  
Sin π

t
 +  εt           t = 1, . . . , 100  (8) 
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Where; ε’s are generated with mean 0, standard deviations 0.8 and 1.0  

 A Monte Carlo simulation study was conducted to evaluate the performances of the four selection 

methods described in this study i.e. GML, GCV, UBR and PSM. Data were simulated by using a program coded 

in R (version 3.2.3) for smoothing functions λ = 1, 2, 3 and 4, sample sizes; 20, 60 and 100, two standard 

deviation were considered i.e. σ = 0.8 and 1.0. The number of replications was 1000 for each of the samples. For 

each simulated data sets, the predictive mean squared-errors (PMSE) were used to evaluate the quality of 

estimate, it is written mathematically as;  

PMSE λ =  E    f xi − f  xi  

n

i=1

2

 (9)  

The Predictive Mean Square Error can be divided into two terms, the first term is the sum of square biases of the 

fitted values while the second is the sum of variances of the fitted values. 

Where; 

f xi   = observed value and f  xi = fitted/predicted/estimated value 

PMSE λ =   E f  xi  − f xi  
2

n

i =1

 =   var f  xi  (10)

n

i =1

 

 

IV. SIMULATION RESULT 
 In this study, a modified Spline smoothing estimation method and compared its efficiency with three 

existing estimation methods namely; the Generalized Cross-Validation, Generalized Maximum Likelihood and 

Unbiased Risks, we computed Predictive mean square errors criterion to measure their efficiency.  

 

Table 4.1: PMSE result for the smoothing methods when there is no autocorrelation for smoothing 

parameters (λ = 1, 2, 3 and 4), time (T = 20, 60 and 100) and std. deviation (σ = 0.8) 
Time size Smoothing 

Methods 

 Smoothing Parameter levels  

λ = 1 λ = 2 λ = 3 λ = 4 

T =20 GCV 

GML 

PSM(k=1) 
UBR 

0.053273 

0.081617 

100.4239 
0.04802 

0.044131 

0.082523 

82.71148 
0.032269 

0.042976 

0.082663 

79.70962 
0.030172 

0.042599 

0.082711 

78.68089 
0.017179 

T = 60 GCV 

GML 
PSM(k=1) 

UBR 

0.027264 

0.074695 
38.44716 

0.034561 

0.021027 

0.07129 
31.91883 

0.024042 

0.020245 

0.070683 
30.81778 

0.022625 

0.029484 

0.070472 
30.44087 

0.022158 

T = 100 GCV 
GML 

PSM(k=1) 

UBR 

0.025094 
0.068976 

4.003851 

0.025485 

0.018843 
0.067162 

3.198199 

0.018456 

0.018061 
0.066835 

3.069462 

0.017496 

0.017806 
0.066721 

3.02584 

0.017179 

 

 The table above presents the predictive mean square error for the four estimators, three time periods, 

and four spline smoothing levels at 0.8 sigma level. It was discovered that for GCV;the predictive mean square 

error decreases from 0.053273 to 0.027264 to 0.025094 as the time series sample increases from T = 20 to 60 

and to 100 for λ =1. For GML; the predictive mean square error decreases from 0.082663 to 0.070683 and then 

to 0.066835 as the time series sample increases from T = 20 to 60 and to 100 for λ =3. For PSM;the predictive 

mean square error decreases from 78.68089 to 30.44087 and then to 3.02584 as the time series sample increases 

from T = 20 to 60 and to 100 for λ =4 and for UBR, the predictive mean square error decreases from 0.030172 

to 0.022625 and then to 0.017496 as the time series sample increases from T = 20 to 60 and to 100 for λ = 3. 

 

Table 4.2: PMSE result for the smoothing methods when there is no autocorrelation for smoothing 

parameters (λ = 1, 2, 3 and 4), time (T = 20, 60 and 100) and std. deviation (σ = 1.0) 
Time size Smoothing 

Methods 

 Smoothing Parameter levels  

λ = 1 λ = 2 λ = 3 λ = 4 

T =20 GCV 

GML 

PSM(k=1) 
UBR 

0.1268264 

0.182682 

80.87162 
0.056372 

0.104707 

0.18376 

62.52266 
0.03999 

0.101912 

0.183906 

59.62848 
0.037767 

0.101001 

0.183954 

58.65031 
0.037034 

T = 60 GCV 

GML 
PSM(k=1) 

UBR 

0.0424942 

0.0902741 
31.6832 

0.0444551 

0.033899 

0.087698 
24.93528 

0.030348 

0.032822 

0.087233 
23.85243 

0.02846 

0.032471 

0.087072 
23.48527 

0.027839 

T = 100  GCV 
GML 

0.0242396 
0.0598298 

0.019535 
0.057675 

0.018947 
0.05729 

0.018755 
0.057156 
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PSM(k=1) 

UBR 

3.704103 

0.0373787 

2.900917 

0.025315 

2.77374 

0.023706 

2.730723 

0.023177 

 

 Table 4.2 presents the predictive mean square error for the four estimators, three time periods, and four 

spline smoothing levels at 1.0 sigma level. It was discovered that for GCV;the predictive mean square error 

decreases from 0.104707 to 0.033899 to 0.019535 as the time series sample increases from T = 20 to 60 and to 

100 for λ = 2. For GML;the predictive mean square error decreases from 0.183954 to 0.087072 and then to 

0.057156 as the time series sample increases from T = 20 to 60 and to 100 for λ = 4. For PSM;the predictive 

mean square error decreases from 80.87162 to 31.6832 and then to 3.704103 as the time series sample increases 

from T = 20 to 60 and to 100 for λ = 1 and for UBR, the predictive mean square error decreases from 0.056372 

to 0.0444551 and then to 0.0373787 as the time series sample increases from T = 20 to 60 and to 100 for λ = 1 

 

4.3 Smoothing curves of the time series observation in the absence of Autocorrelation error 

 
Figure 4.3.1:Plots of the observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV 

(a), GML (b), PSM (c), and UBR (d) for λ=1,2,3,4 σ = 0.8 and T = 20 

 
Figure 4.3.2:Plots of the observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV 

(a), GML (b), PSM (c), and UBR (d) for λ=1,2,3,4 σ = 0.8 and T = 60 
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Figure 4.3.3:Plots of the observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV 

(a), GML (b), PSM (c), and UBR (d) for λ=1,2,3,4 σ = 0.8 and T = 100 

 
Figure 4.3.4:Plots of the observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV 

(a), GML (b), PSM (c), and UBR (d) for λ=1,2,3,4 σ = 1.0 and T = 20 

 
Figure 4.3.5:Plots of the observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV 

(a), GML (b), PSM (c), and UBR (d) for λ=1,2,3,4 σ = 1.0 and T = 60 
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Figure 4.3.6:Plots of the observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV 

(a), GML (b), PSM (c), and UBR (d) for λ=1,2,3,4 σ = 1.0 and T = 100 

Figure 4.3.7:Box plot of the GML, GCV, PSM and UBR of the PMSE of the simulated study in the absence of 

autocorrelation when σ = 0.8 and T = 20, 60 and 100 

 
Figure 4.3.8:Box plot of the GML, GCV, PSM and UBR of the PMSE of the simulated study in the absence of 

autocorrelation when σ = 1.0 and T = 20, 60 and 100 

 

 Figures 4.3.1 – 4.3.8 above presents the plots of the estimates for GCV, GML, PSM and UBR for 1,000 

replications in the absence of autocorrelation error based on the predictive mean square error criterion. From 

these plots it is observed that GCV, GML and UBR estimates has small Predictive mean square error compare to 

PSM. The GCV have a smaller PSME, but the PSM estimates have larger PSME. From the predictive mean-

square errors and plots of the estimated functions (shown above) it is concluded that all three smoothing 
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methods estimate the smoothing parameters and the functions well. The UBR and GCV provide better estimates 

than GML and PSM in terms of the predictive mean-square error. The UBR method is more stable when the 

sample size is small and moderate, such as when T = 20 and 60. In this case there were several replications 

where GML and PSM provided very small estimates of smoothing parameters which lead to over-fitting the 

data. This behavior of the method was investigated in Wahba and Wang (1993) and Wang (1998). The GCV 

method performs as well as the UBR method for large sample sizes (T = 100) and better than the GML and 

PSM method at all sample sizes. The UBR method is computationally more efficient than the GCV, GML and 

PSM methods. Overall the UBR method works well and is recommended for the time series observations in the 

absence of autocorrelation error. 

 

Table 4.3A: Rank of the performance of smoothing methods when there is no autocorrelation for time 

periods = 20, 60 and 100, smoothing function = 1, 2, 3 and 4 and for std. dev. = 0.8 
Time size Smoothing 

Method 

 Smoothing Parameter levels 

λ = 1 λ = 2 λ = 3 λ = 4 

T =20 GCV 

GML 
PSM(k=1) 

UBR 

2 

3 
4 

1 

2 

3 
4 

1 

2 

3 
4 

1 

2 

3 
4 

1 

T = 60 GCV 
GML 

PSM(k=1) 

UBR 

1 
3 

4 

2 

1 
3 

4 

2 

1 
3 

4 

2 

2 
3 

4 

1 
T = 100 GCV 

GML 

PSM(k=1) 
UBR 

1 

3 

4 
2 

2 

3 

4 
1 

2 

3 

4 
1 

2 

3 

4 
1 

 

Table 4.3B: Preferred smoothing methods at λ = 1, 2, 3 and 4 for time periods= 20, 60 and 100 and 

standard deviation = 0.8 

 

 

 

 

 

 

Table 4.3C: Rank of the performance of smoothing methods when there is no autocorrelation for time 

periods = 20, 60 and 100, smoothing function = 1, 2, 3 and 4 and for std. dev. = 1.0 
Time size Smoothing 

Method 

 Smoothing Parameter levels 

λ = 1 λ = 2 λ = 3 λ = 4 

T =20 GCV 

GML 

PSM(k=1) 
UBR 

2 

3 

4 
1 

2 

3 

4 
1 

2 

3 

4 
1 

2 

3 

4 
1 

T = 60 GCV 

GML 
PSM(k=1) 

UBR 

1 

3 
4 

2 

2 

3 
4 

1 

2 

3 
4 

1 

2 

3 
4 

1 

T = 100 GCV 
GML 

PSM(k=1) 

UBR 

1 
3 

4 

2 

1 
3 

4 

2 

1 
3 

4 

2 

1 
3 

4 

2 

 

Table 4.3D: Preferred smoothing methods at λ = 1, 2, 3 and 4 for time periods= 20, 60 and 100 and 

 standard deviation = 1.0 

 

 

 

 

 

 

V. DISCUSSION OF FINDINGS AND CONCLUSION 
The four tables above presents ranks and preferred smoothing methods of the four smoothing 

methods/estimators (GCV, GML, PSM and UBR) of the four smoothing parameters (λ = 1, 2, 3 and 4) at three 

 
Time series level 

 Smoothing Parameters 

λ   = 1 λ   = 2 λ   = 3 λ   = 4 

T = 20, UBR UBR UBR UBR 

T = 60 GCV GCV GCV UBR 
T = 100 GCV UBR UBR UBR 

 

Time series level 

 Smoothing Parameters 

λ   = 1 λ   = 2 λ   = 3 λ   = 4 

T = 20, UBR UBR UBR UBR 
T = 60 GCV UBR UBR UBR 

T = 100 GCV GCV GCV GCV 



A Proposed Spline Smoothing Estimation Method For Time Series Observations 

www.ijmsi.org              25 | Page 

time periods (i.e. T = 20, 60 and 100) when the standard deviation is 0.8 and 1 in the absence of Autocorrelation 

error.  

From the results present in table 4.3B, it can be seen that UBR estimator had the least predictive mean 

square error when the time series size is small (T = 20), GCV estimator had the smallest predictive mean square 

error when the time series size is moderate (T = 60) except when the smoothing parameter is four (λ = 4) and 

UBR estimator had the smallest predictive mean square error when the time series size is high (T = 100) except 

when the smoothing parameter is one (λ = 1).  

From the results present in table 4.3C, it can be seen that UBR estimator had the least predictive mean 

square error when the time series size is small (T = 20), UBR estimator also had the smallest predictive mean 

square error when the time series size is moderate (T = 60) except when the smoothing parameter is one (λ = 1) 

and GCV estimator had the smallest predictive mean square error when the time series size is high (T = 100) at 

all levels of smoothing parameters.  

In summary, UBR and GCV were the best estimators for time series observations in the absence of 

Autocorrelation at the four smoothing parameters (λ = 1, 2, 3 and 4), three time periods (i.e. T = 20, 60 and 

100), for standard deviation (σ = 0.8 and 1) based on the predictive mean square error (PSME) criterion. 
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