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ABSTRACT: In this paper I propose a new model as a general alternative of the Cox model which can be
applied in case of a monotonic hazard ratio and also when the cross effect of hazard rates (also the survival
function) is observed. I give a semiparametric estimation of parameters base on modified partial likelihood
(MPL). I derive the limit distribution of the MPL estimator and I investigate a finite samples properties of
this estimation by simulation. Real data examples are considered in the end of this paper.
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I. INTRODUCTION
The Cox model is widely used in in several fields for describing the relationship beteween the hazard

rates and associeted covariates. A basic assumption in this model is the proportionality of the effects of
the covariates on the hazard rates, which means that the hazard ratio for two units is constant on time.
In many data analysis this assumption is not valid because the hazard ratio can vary with time as in case
of observed cross-effect of hazard rates as in the well known data concerning effects of chemotherapy and
radiotherapy on the survival times of gastric cancer patients (Stablein and Koutrouvelis (1985)).
In this paper a semiparametric model is proposed, which generalizes the Cox model. I describe my model in
the next section. In section 3 the modified partial likelihood (see Bagdonavičius and Nikulin (2002)) is used
to estimate the model parameters and is performed by a simulation study in section 4. As an application
a real example is considered in section 5.

II. A GENERAL ALTERNATIVE
Let Sx(t) and λx(t) be the survival and hazard rate functions under a p-dimensional covariate x =

(x1, ..., xp). Denote by

Λx(t) =
∫ t

0
λx(u)du = −log(Sx(t)) , t ≥ 0, the cumulative hazard rate under x. The Cox model express

the hazard rate according to x as follow

λx(t) = eβ
T xλ0(t), (1)

where β is a vector of unknown parameters and λ0(t) stands for an unknown baseline hazard function.
Under model (1) the cumulative hazard rate under x has the forme

Λx(t) = eβ
T xΛ0(t),

where Λ0(t) =
∫ t

0
λ0(t)dt is the cumulative baseline hazard function which supposed verifiying Λ0(∞) = ∞.

One of the main assumptions in the model (1) is of course the proportionality, that the ratio of two hazard
under a covariates x and y is constant in time,

λx(t)

λy(t)
= eβ

T (x−y).

Several variants and generalization of Cox model where proposed, see for example Aalen (1980), Hsieh
(2001), Bagdonavičius and Nikulin (1999,2002). In this paper the suggested model is defined as:

λx(t) = eβ
T x (1 + Λ0(t))

e−γT x−1
λ0(t). (2)

It implies that for different covariates x and y

λx(t)

λy(t)
= eβ

T (x−y) (1 + Λ0(t))
e−γT x−e−γT y

.

Note that c0 = eβ
T (x−y), so the ratio of hazard rates has the following properties:
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(i) If γTx < γT y then the ratio of hazard increase with time of c0 to ∞.

(ii) If γTx > γT y then the ratio of hazard decrease with time of c0 to 0.

(iii) If γ = 0 then we have the Cox model.

We remark that if c0 < 1 in (i) or if c0 > 1 in (ii) then the hazard rates (also the survival functions) intersect
in a single point t0.

III. SEMIPARAMETRIC ESTIMATION
Semiparametric estimation of unknown parameters in Cox model was developed by Cox (1972), Tsiasis

(1981), Andersen and Gill (1982). We use here a modified partial likelihood approach (Bagdonavičius and
Nikulin (1999)) to estimate the parameters in the proposed model.

Suppose that n patients are observed. The ith of them is observed under the covariate xi. Denote by
Ti and Ci the failure and censoring times for the ith patient and set

Xi = min(Ti, Ci), δi = 1{Ti≤Ci},

Ni(t) = 1{Ti≤t,δi=1}, Yi(t) = 1{Xi≥t},

where 1A denotes the indicator of the event A. Then N(t) =
∑n

i=1 Ni(t) and Y (t) =
∑n

i=1 Yi(t) are the
numbers of observed failures in the interval [0, t] and patients at risk just before the moment t, respectively.
We suppose that failure times Ti are absolutely continuous random variables.

The partial likelihood function (PL) (see Andersen and others (1993)) adapted to model (2)

L(θ) =
n∏

i=1

∫ ∞

0

g (xi, θ,Λ0(v)) dNi(v)
n∑

j=1

Yj(v)g (xj , θ,Λ0(v))


δi

(3)

where θ =
(
βT , γT

)T
and g(x, θ, u) = eβ

T x (1 + u)
e−γT x−1

, depends on unknown cumulative baseline
hazard rates Λ0(t).

Let us consider the modified partial likelihood function (see Bagdonavičius and Nikulin (1999)) (MPL):

L̃(θ) =

n∏
i=1

∫ ∞

0

g
(
xi, θ, Λ̃0(v, θ)

)
dNi(v)

n∑
j=1

Yj(v)g
(
xj , θ, Λ̃0(v, θ)

)


δi

(4)

where the the random function Λ̃0(t, θ) which is formulated using the Doob-Meier decomposition, is
obtained recurrently from the equations

Λ̃0(t, θ) =

∫ t

0

dN(v)

S(0)(v−, Λ̃0, θ)
, (5)

taking S(0)(v, Λ̃0, θ) =
n∑

i=1

g(xi(v), Λ̃0(v, θ), θ)Yi(v) and Λ̃0(0, θ) = 0.

For fixed θ the ”estimator” Λ̃0 can be found recurrently. Really, let T ∗
1 < ... < T ∗

r be observed and ordered
distinct failure times, r ≤ n. Note by dl the number of failures at the moment Tl. Then

Λ̃0(0; θ) = 0, Λ̃0(T
∗
1 ; θ) =

d1

S(0)(0, Λ̃0, θ)
,

Λ̃0(T
∗
l+1; θ) = Λ̃0(T

∗
l ; θ) +

dl+1

S(0)(T ∗
l , Λ̃0, θ)

) (6)
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for l = 1, ..., r − 1.
So the modified score functions associated to (4) are

Ũj(θ) =

n∑
i=1

∫ ∞

0

{w(i)
j (u, θ, Λ̃0)− Ej(u, θ, Λ̃0)} dNi(u), (7)

where w
(i)
j (t, θ,Λ0) = ∂

∂βj
log{λi(t, θ)} = x

(i)
j , w

(i)
p+j(t, θ,Λ0) = ∂

∂γj
log{λi(t, θ)} = −x

(i)
j e−γT x(i)

ln(1 +

Λ0(t)), for any j ∈ {1, ..., p},

Ej(v, θ,Λ0) =
S
(1)
j (v, θ,Λ0)

S(0)(v, θ,Λ0)
, S

(1)
j (v, θ,Λ0) =

n∑
i=1

w
(i)
j (v, θ,Λ0)Yi(v)g (xi, θ,Λ0(v)) ,

for any j ∈ {1, ..., 2p}.

The estimator of the survival function under any value x of the covariate is

Ŝx(t) = exp

{
−e(β̂+γ̂)T x

((
1 + Λ̂0(t)

)e−γT x

− 1

)}
, (8)

with Λ̂0(t) = Λ̃0(t, θ̂) and θ̂ is the maximum modified partial likelihood estimator of θ.

IV. ASYMPTOTIC PROPERTIES OF THE ESTIMATORS
Suppose that maximal time given for experiment is τ ∈]0,+∞[ and all items which did not fail and were

not censored before τ , are censored at this moment.
Denote by θ0 the true value of θ under the model (2), ∥A∥ = supi,j |aij | the norm of the matrix A = (aij ,
A⊗2 the product AAT ,

g1 =
∂

∂θ
g, w(i) =

(
w

(i)
j

)
j=1,...,2p

, S(1) =
(
S
(1)
j

)
j=1,...,2p

, E = (Ej)j=1,...,2p ,

S
(0)
⋆ (v, θ) =

n∑
i=1

Yi(v)g(xi,Λ0(v), θ)g2(xi,Λ0(v), θ),

S
(1)
⋆ (v, θ) =

n∑
i=1

g1(xi,Λ0(v), θ)g2(xi,Λ0(v), θ),

S(2)(v, θ) =

n∑
i=1

∂w(i)(v, θ)

∂θ
Yi(v)g(xi,Λ0(v), θ),

S
(2)
⋆ (v, θ) =

n∑
i=1

g(xi,Λ0(v), θ)g3(xi,Λ0(v), θ),

where g2 and g3 denotes respectively the partial derivatives of g and g1 with respect to the second argument.
Assumptions A :

a)- Suppose that exist a neighbourhood Θ of θ0 and continuous on Θ uniformly in t ∈ [0, τ ] and bounded

on Θ× [0, τ ] functions s(k)(v, θ), s
(k)
⋆ (v, θ), such that s(0)(v, θ0) > 0 on [0, τ ] and

sup
θ∈Θ,v∈[0,τ ]

∥ 1
n
S(k)(v, θ)− s(k)(v, θ)∥ −→ 0 as n −→ ∞,

sup
θ∈Θ,v∈[0,τ ]

∥ 1
n
S
(k)
⋆ (v, θ)− s

(k)
⋆ (v, θ)∥ −→ 0 as n −→ ∞, (k = 0, 1, 2),
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sup
θ∈Θ,v∈[0,τ ]

∥∂E(v, θ

∂θ
− ∂e(v, θ)

dθ
∥ P−→ 0, e(v, θ) =

s(1)(v, θ)

s(0)(v, θ)
.

b)- Λ0(τ) < ∞.

Put e⋆(v, θ) = s
(0)
⋆ (v, θ)/s(0)(v, θ), h(t, θ) = exp(

∫ τ

0
e⋆(v, θ)dΛ0(v)),

h1(v, θ) =
s(1)(v, θ)s

(0)
⋆ (v, θ)− s(0)(v, θ)s

(1)
⋆ (v, θ)

s(0)(v, θ)
− s

(2)
⋆ (v, θ),

w(v, θ) = e(v, θ)− 1

h(v, θ)s(0)(v, θ)

∫ τ

v

h1(s, θ)h(s, θ)dΛ0(s).

c)- The symmetrical matrix

Σ1(θ0) = −
∫ τ

0

(
s(2)(u, θ0)−

de(u, θ0)

dθ
s(0)(u, θ0)

)
dΛ0(u)

is positive definite.
d)-

∫ τ

0
J(v)(w(v, θ0)− E(v, θ0))

⊗2s(0)(u, θ0)dΛ0(v) < ∞.

Theorem Under Assumptions A we have

n1/2(θ̂ − θ0)
D−→ N(0,Σ−1

1 (θ0)).

Sketch of the proof. Similarly as in Bagdonaviçus and Nikulin(1999)

n1/2(θ̂ − θ0) =

(
− 1

n

dŨ(θ0)

dθ

)−1

n−1/2Ũ(θ0) + op(1), (9)

n−1/2Ũ(θ0) = n−1/2
n∑

i=1

∫ τ

0

J(u)(w(i)(u, θ0)− w(u, θ0))dMi(u) + op(1),

and

− 1

n

dŨ(θ0)

dθ
= − 1

n

∫ τ

0

(
S(2)(u, θ0)−

dE(u, θ0)

dθ
S(0)(u, θ0)

)
dΛ0(u)

− 1

n

n∑
j=1

∫ τ

0

(
dwj(u, θ0)

dθ
− dE(u, θ0)

dθ

)
dMj(u) + op(1)

Pr−→ Σ1(θ0), (10)

where Mj is the martingale process obtained from the Doob-Meier decomposition.

The predictable variation for n−1/2Ũ(θ0) is

< n−1/2Ũ(θ0) > =
1

n

n∑
i=1

∫ τ

0

J(u)(wi(u, θ0)− w(u, θ0))
⊗2u(xi,Λi(u, θ0), θ0)Yi(u)dΛ0(u)

= − 1

n

∫ τ

0

J(u)(S(2)(u, θ0)−
dE(u, θ0)

dθ
S(0)(u, θ0))dΛ0(u)

+
1

n

∫ τ

0

J(u)(w(u, θ0)− E(u, θ0))
⊗2S(0)(u, θ0)dΛ0(u).

Under assumption d)-,

1

n

∫ τ

0

J(u)(w(u, θ0)− E(u, θ0))
⊗2S(0)(u, θ0)dΛ0(u)

Pr−→ 0, as n → ∞,
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so
< n−1/2Ũ(θ0) >

Pr−→ Σ1(θ0).

Under assumptions A and in the same way as it is shown in Bagdonaviçus and Nikulin(1999), we have

n−1/2Ũ(θ0)
D−→ N(0,Σ1(θ0)). (11)

From (9)-(11) the proof is complete.

V. SIMULATION STUDY
In this section we consider the model given in (2) with time-independent univariate covariates x = x1

and bivariate covariate x = (x1, x2) where x1 and x2 are independent and generated from Uniform[-2,2]
distribution. The failure time Tx is generated from a following model:

λx(t) = eβ
T x (1 + t)

e−γT x−1
,

which is a particular case of model (2) (Λ0(t) = t). We take for θ = (β1, γ1) three choices (2,0) (Cox model
hold), (2,-1),(2,1). In bivariate covariate cases, we take θ = (β1, β2, γ1, γ2) two vectors (2,1,0,0) (Cox model
hold) and (2,1,1,1). For n number of units we consider two values 100 and 200. The censoring time Cx is
considered constant (Cx = d) and generated independently of Tx. The constant d is calculated from the
formulae p = Sx(d) to garantie the chosen censoring probability p. Two values considered of p are p = 0 (a
complete data) and p = 0.2 (censoring percentage is 20%). We note that The simulation consists of 2000
replication for each of considered cases. The results are resumed in the two following tables. Note that the
values in parentheses are variances of parameter estimates.

From table 1 and table 2 the MPL estimates θ̂ work well in all considered cases. They are nearly
unbiased and have a small variance in all cases. Their bias and variance decreases and increases respectively

in function of n and p. It means that θ̂ converge on average and quadratic average and the speed of
convergence depends on p.

β = 2 γ = 0 β = 2 γ = −1 β = 2 γ = 1

n p β̂ γ̂ β̂ γ̂ β̂ γ̂

100 0 1.9321 -0.2866 2.0652 -0.9479 2.0274 0.9995
(0.1005) (0.3748) (0.0900) (0.3342) (0.0371) (0.0086)

0.2 1.9953 -0.2196 2.1098 -0.7173 2.0333 0.9985
(0.1011) (0.3946) (0.1040) (0.4234) (0.0391) (0.0089)

200 0 1.9500 -0.1871 2.0350 -0.9721 2.0127 0.9990
(0.0548) (0.2441) (0.0470) (0.2190) (0.0173) (0.0038)

0.2 1.9838 -0.1539 2.0805 -0.7838 2.0087 0.9934
(0.0508) (0.2662) (0.0511) (0.3205) (0.0267) (0.0054)

Table 1: Univariate covariate cases

β1 = 2 β2 = 1 γ1 = 0 γ2 = 0 β1 = 2 β2 = 1 γ1 = 1 γ2 = 1

n p β̂1 β2 γ̂1 γ2 β̂1 β2 γ̂1 γ2

100 0 1.9435 0.9777 -0.3865 -0.1608 2.0450 1.0294 0.9955 1.0043
(0.1027) (0.0429) (0.3865) (0.1264) (0.0362) (0.0209) (0.0067) 0.0086

0.2 1.9849 0.9932 -0.2863 -0.1408 2.0615 1.0216 1.0003 1.0024
(0.0.0992) (0.0463) (0.3935) (0.1504) (0.0434) (0.0268) (0.0084) 0.0097

200 0 1.980 0.9854 -0.1376 -0.0691 2.0214 1.0157 0.9975 1.0029
(0.0502) (0.0191) (0.1706) (0.0465) (0.0164) (0.0088) 0.0030 0.0036

0.2 1.9846 0.9918 -0.1439 -0.0711 2.0245 1.0101 1.0016 1.0039
(0.0493) (0.0195) (0.1962) (0.0608) (0.0175) (0.0119) (0.0035) (0.0041))

Table 2: Bivariate covariate cases
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VI. ANALYSIS OF RADIO-CHEMOTHERAPY DATA
In this section we give analysis of the two-sample data of Stablein and Koutrouvelis [1] concerning effects

of chemotherapy and chemotherapy plus radiotherapy on the survival times of gastric cancer patients.
This example is also analysed in Hsieh(2001). The number of patients is 90. By plotting the Kaplan-
Meier (KM) estimates of survival functions pertaining to the both treatment groups (Fig. 1), a crossing
hazards phenomenon is clearly manifest at a time 781 days. These both estimated curves are visually very
different from each other, especially before their crossing. This crossing clearly indicates a violation of the
proportional hazards assumption and renders the classical analysis unable to reflect properly the effects
of differences between the two treatments. This can also be seen in Fig. 1 in which the two proportional
hazards estimated survival curves produced by the partial likelihood approach via the PH model are rather
close to each other along the time interval considered. The corresponding estimated parameter β is -0.1059.
To accommodate the crossing hazard phenomenon, we performed inference using MPL method of estimation
coding 1 for chemo-therapy and 0 for chemo+radio-therapy.

The estimated values obtained by the MPL method of θ = (β, γ)T in model (2) are (-1.9032,-1.3758).

As discussed in Hsieh(2001), one interpretation is that, although the addition of radiotherapy is bene-
ficial to some gastric cancer patients, there is an increased risk of dying associated with the treatment in
the two first years or so for other patients. The resulting inference indicates that the radiotherapy would
first be detrimental to a patient’s survival but becomes beneficial later on.

In Figure 2 we see that the MPL estimated survival functions fit the two nonparametric survival estimates
well.

Figure 1: Comparison of Kaplan-Meier and estimates of survival functions under Cox model.

VII. CONCLUSION
The general alternative of the Cox model considered in this paper with the MPL procedure, has proved

firstly through the simulation study and secondly through the real data application, its importance to be
used in survival analysis fields. It can be also used to test the hypothesis of proportionality of the hazard
rates. This will be the subject of next work.
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Figure 2: Comparison of Kaplan-Meier and MPL estimates of survival functions.
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