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ABSTRACT: In this article, we have introduced a three-parameter lifetime model having monotonically 

increasing or decreasing and constant failure rate called the new exponential extension Poisson distribution. 

Various statistical and mathematical properties of the proposed model are discussed and calculated. The 

parameters of the proposed model are estimated by using the MLE method and also constructed the asymptotic 

confidence intervals and standard errors. Further, the Fisher information matrix is derived analytically to obtain 

the variance-covariance matrix for MLEs. The proposed methodology is illustrated using two real data sets. All the 
computations are preformed in R software. The potentiality of the proposed distribution is illustrated by using some 

graphical methods and statistical tests, where the proposed distribution provided a better fit and more flexible in 

comparison with some other lifetime distributions. 
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I. INTRODUCTION 
In survival analysis, the length of the life of a component or device or a system is explained by lifetime 

distributions. The lifetime distributions are most frequently used in the field like life sciences, biological sciences, 

engineering and manufacturing, etc.  For the analysis of survival data, many well-known probability models such as 

exponential, Weibull, Cauchy, gamma, etc. are used in many statistical kinds of literature. The exponential 

distribution is the most frequently used distribution due to the existence of simple elegant closed-form solutions to 

various survival analysis problems. The failure rate of the exponential distribution is stable but in actual practice, the 

failure rates are not always stable. Hence in several situations, it seems to be inadequate and unrealistic. For this, 

some modifications are needed to make exponential distribution more flexible. In recent, a new class of models has 

been introduced based on the modification of exponential distribution.  
Gupta and Kundu (1999) have introduced the generalized exponential (GE) distribution, this extended 

family can accommodate data with increasing and decreasing failure rate functions, Kus (2007) has introduced the 

two-parameter exponential Poisson (EP) distribution by compounding exponential distribution with zero truncated 

Poisson distribution with decreasing failure rate. The CDF of PE distribution is, 
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While Barreto-Souza and Cribari-Neto (2009) have introduced generalized EP distribution having the 

decreasing or increasing or upside-down bathtub shaped failure rate. This is the generalization of the distribution 

proposed by Kus (2007) adding a power parameter to this distribution. Following the same fashion Cancho (2011) 

has introduced a new distribution family also based on the exponential distribution with an increasing failure rate 

function known as Poisson exponential (PE) distribution. The CDF of PE distribution can be expressed as 
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Louzada-Neto et al., (2011) has introduced a two-parameter Poisson-exponential with increasing failure rate by 

using the same approach as used by (Cancho, 2011) under the Bayesian approach. Alkarni and Oraby (2012) have 
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presented a new lifetime class with a decreasing failure rate which is obtained by compounding truncated Poisson 

distribution and a lifetime distribution. The CDF of the Poisson family is given by,  
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Where   the parameter is space and  ,G y   is the CDF of baseline distribution. Using a similar approach 

the Weibull power series class of distributions with Poisson has presented by (Morais & Barreto-Souza, 2011). 

Mahmoudi and Sepahdar (2013) have presented a new four-parameter distribution with increasing, decreasing, 

bathtub-shaped, and unimodal failure rate called as the exponentiated Weibull–Poisson (EWP) distribution which 

has obtained by compounding exponentiated Weibull (EW) and Poisson distributions. The new compounding 

distribution named the Weibull–Poisson distribution was introduced by (Lu & Shi, 2012) having the shape of 

decreasing, increasing, upside-down bathtub-shaped or unimodal failure rate function. Furthur Kaviayarasu and 

Fawaz (2017) have made an extensive study on Weibull–Poisson distribution through a reliability sampling plan. 

Kyurkchiev et al. (2018) has used the exponentiated exponential-Poisson as the software reliability model. Louzada 

et al. (2020) has used different estimation methods to estimate the parameter of exponential-Poisson distribution 

using rainfall and aircraft data. Chaudhary and Kumar (2020) have presented the half logistic exponential extension 

distribution that can have the shape of decreasing, increasing, and upside-down bathtub-shaped failure rate function.  
 In this study, we propose a new distribution based on a new exponential extension (NEE) (Joshi, 2015) having 

monotonically increasing or constant failure rate function. The hazard rate function of NEE distribution is, 
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The motivation of this study is to obtain a more flexible model by adding just one extra parameter to the new 

exponential extension distribution to achieve a better fit to the real data. The different sections of this study are 

arranged as follows; in Section II we present the new exponential extension Poisson distribution with its properties. 

We extensively discussed the maximum likelihood estimation method in Section III. In Section IV using a real 

dataset, we present the estimated values of the model parameters and their corresponding asymptotic confidence 

intervals and fisher information matrix. Also, we present the different test criteria to assess the potentiality of the 

proposed model. Some concluding remarks are presented in Section V. 
 

II. THE NEW EXPONENTIAL EXTENSION POISSON (NEEP) DISTRIBUTION 

Let ( )G x  and ( )g x  be the baseline CDF and PDF respectively. The Poisson family defined by (Alkarni & Oraby, 

2012) whose CDF and PDF respectively can be written as 
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and  
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In this study we have taken the new exponential extension (NEE) (Joshi, 2015) as baseline distribution with CDF 

and PDF respectively as follows, 
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Hence, we can define the new Exponential Extension Poisson (NEEP) distribution as  

Let X be a non negative random variable representing the lifetime of an item or component or a system in some 

population. The random variable X is said to follow the NEEP distribution with parameters  , , 0     if its 

cumulative distribution function is given by 
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And its corresponding probability density function is 
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Figure 1 exhibits the graph for PDF and hazard function for NEEP distribution for different values of parameters. 

From Figure 1 (left panel), the density function of the NEEP distribution can bear different shapes according to the 

values of the parameters. Figure 1 (right panel) demonstrates the increasing, decreasing, and constant graph of the 

hazard function. 

 

 
Figure 1. Graph of PDF (left panel) and hazard function (right panel) for different values of the parameters. 

 

Survival function: 

The survival function  R t , which is the probability of an item not failing up to time t, is defined by    1R t F t  . 

The survival /reliability function of a new exponential extension Poisson distribution is given by 
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The hazard rate function (HRF)  

Let t be the lifetime of a component or item and the probability that it will not survive for an additional time t  

then, hazard rate function is, 
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where R(t) is a reliability function. 

Hence let,  X ~ , ,  N E E P     then its hazard rate function is 
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The quantile function of NEEP distribution is,  

The value of the pth quantile can be obtained by solving the following equation, 
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And we get the quantile function by inverting (2.3) as 
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For the generation of the random numbers of the NEEP distribution, we suppose simulating values of random 

variable X with the CDF (2.5). Let U denote a uniform random variable in (0, 1), then the simulated values of X can 

be obtained by  
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Skewness and Kurtosis:  

The Bowley’s skewness based on quartiles is, 
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  Q a n d Q are the upper quartile and lower quartile respectively. 

The coefficient of kurtosis based on octiles given by (Moors, 1988) is 
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III. MAXIMUM LIKELIHOOD ESTIMATION METHOD 

If 
1 2
, , . . . ,

n
x x x  is a random sample from ( , , )N E E P     then the likelihood function,  , ,L     is given by, 
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The log-likelihood density is 
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Differentiating (3.1) with respect to α, β, and λ we get, 
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Solving non-linear equations 0 ,  0   0
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, for α, β, and λ, we get the maximum likelihood 

estimate ˆ ˆˆ ,   a n d    of the parameters α, β, and λ. The maximization of (3.1) can be obtained by using computer 

software like R, Matlab, etc. For the interval estimation of α, β, and λ and testing of the hypothesis, we have to 

calculate the observed information matrix. The observed information matrix for α, β, and λ can be obtained as 



New Exponential Extension Poisson Distribution: Properties and Applications 

DOI: 10.35629/4767-08093545                                    www.ijmsi.org                                                             39 | Page 

M M M

M M M M

M M M

     

     

     

 

 

 

 
 

 

where 

22

2

1

xi
i i

n

x x e

i

i

n
M x e


 

 





 



     

2

1 1

1 1

( )

i
xi

i i i

xn n

x x x e

i ii i i

e
M e e

x x x




  

 
   







  

 

 
     

  
   

 
22

1

n n e
M

e



 


  



 

 
2

1 1

xi
i i i i

n n

x x x x e

i i i

i i

M x e x x e e


   

 
 


   

 

       

1

xi
i i

n

x x e

i

i

M x e


 

 


 



  and 
1

xi
i i

n

x x e

i

M e


 

 



 



   

Let ( , , )     denote the parameter space and the corresponding MLE of   is ˆ ˆˆ ˆ( , , )    as then
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 follows the asymptotic multivariate normal distribution, where  M  is 

Fisher's information matrix. By applying the Newton-Raphson algorithm to maximize the likelihood (3.1) produces 

the observed information matrix and hence the variance-covariance matrix is obtained as, 
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Hence from the asymptotic normality of MLEs, approximate 100(1-α) % confidence intervals for α, β, and λ can be 

constructed as, 
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IV. ILLUSTRATION WITH REAL DATASETS 
In this section, we have presented the applicability of new exponential extension Poisson distribution using two real 

datasets used by earlier researchers. To compare the potentiality of the proposed model, we have considered the 

following four distributions. 

a. Exponentiated Exponential Poisson (EEP): 

The probability density function of EEP (Ristić & Nadarajah, 2014) can be expressed as 
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b. The new exponential extension (NEE) 

The probability density function of NEE (Joshi, 2015) is 
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c. Power Lindley distribution (LP): 

The probability density function of power Lindley distribution (Ghitany et al., 2013) with parameters α and β is 
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d. Weibull distribution: 

The probability density function of Weibull (W) distribution is 
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Dataset-I 

The data set is originally considered by (Bader & Priest, 1982). The data given represent the strength measured in 

GPA for single carbon fibers of 10mm in gauge lengths with sample size 63 and they are as follows: 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 

2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 
3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 

3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020 

 

In Figure 2 we have displayed the graph of profile log-likelihood functions of ML estimates of α, β, and λ. We have 

found that ML estimates of α, β, and λ exist and can be obtained uniquely. 

 

 

   
Figure 2. The plots of the profile log-likelihood function of ML estimates of α, β, and λ. 

 

We have calculated the MLEs directly by using the optim() function (Schmuller, 2017) in  R software (R Core 

Team, 2020) by maximizing the likelihood function (3.1). We have obtained     ̂ = 2.2834, ̂ = 1.8802, ̂ = 

25.3327 and corresponding value of Log-Likelihood value is -56.4446. In Table 1 we have presented the MLE’s 

with their standard errors (SE) and 95% confidence interval for α, β, and λ. 

 

Table 1 

MLE, SE and 95% confidence interval for α, β, and λ 

Parameter MLE SE 95%ACI 

alpha 2.2834 0.3849 (0.3849, 3.0378) 

beta 1.8802 0.6280 (0.6648, 3.0952) 

lambda 25.3327 7.9095 (9.8301, 40.8353) 

 

An estimate of the variance-covariance matrix by using MLEs, using equation (3.2) is 
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   
   
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To evaluate the goodness of fit of a given distribution we generally use the PDF and CDF plot. To get the additional 

information we have to plot Q-Q and P-P plots. In particular, the Q-Q plot may provide information about the lack-

of-fit at the tails of the distribution, whereas the KS plot emphasizes the lack-of-fit. From Figure 3 we have shown 

that the NEEP model fits the data very well. 

 

 
Figure 3. The Q-Q plot (left panel) and KS plot (right panel) of NEEP distribution 

 

For the assessment of the potentiality of the NEEP distribution, we have calculated the Akaike information criterion 

(AIC), Bayesian information criterion (BIC), Corrected Akaike information criterion (CAIC) and Hannan-Quinn 

information criterion (HQIC) and these are presented in Table 2.  

 

Table 2 

Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

Model -LL AIC BIC CAIC HQIC 

PEE 56.4446 118.8892 125.3186 119.2960 121.4179 

EEP 57.0630 120.1261 126.5555 120.5328 122.6548 

NEE 58.2218 120.4435 124.7298 120.6435 122.1293 

LP 59.8601 123.7203 128.0066 123.9203 125.4061 

Weibull 61.9570 127.9140 132.2002 128.1140 129.5998 

 

The Histogram and the density function of fitted distributions and Empirical distribution function with estimated 

distribution function of NEEP, Exponentiated Exponential Poisson (EEP), new exponential extension (NEE), Power 

Lindley (LP) and Weibull distributions are presented in Figure 4. 
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Figure 4. The Histogram and the density function of fitted distributions (left panel) and Empirical 

distribution function with estimated distribution function (right panel). 

 

To compare the goodness-of-fit of the NEEP distribution with other competing distributions we have 

presented the value of Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von Mises (CVM) 

statistics. These three statistics are widely used to compare non-nested models and to illustrate how closely a 

specific CDF fits the empirical distribution of a given data set.  From Table 3 the result shows that the NEEP 

distribution has the minimum value of the test statistic and higher p-value, hence we conclude that the NEEP 

distribution gets quite better fit and more consistent and reliable results from others taken for comparison. 

 

Table 3 

The goodness-of-fit statistics and their corresponding p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

PEE 0.0859(0.7413) 0.0687(0.7614) 0.3551(0.8914) 

EEP 0.0907(0.6784) 0.0714(0.7451) 0.4002(0.8480) 

NEE 0.0864(0.7352) 0.0670(0.7717) 0.4781(0.7686) 

LP 0.0896(0.6929) 0.0908(0.6337) 0.6587(0.5937) 

Weibull 0.0876(0.7191) 0.1242(0.4798) 0.9330(0.3941) 

 

Dataset-II 

The following dataset represents the waiting time (in minute) of 100 bank customers (Ghitany et al., 2008). 

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 

4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 
8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 

13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 

23.0, 27.0, 31.6, 33.1, 38.5 

We have obtained the MLEs ̂ = 0.1625, ̂ = 1.9239, ̂ = 1.2806 and corresponding value of Log-Likelihood 

value is -316.9819. In Table 4 we have presented the MLE’s with their standard errors (SE) for α, β, and λ.  

     

Table 4 

MLE and SE for α, β, and λ 

Parameter MLE SE 

alpha 0.1625 0.0250 

beta 1.9239 1.0762 

lambda 1.2806 0.9717 
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An estimate of the variance-covariance matrix by using MLEs, using equation (3.2) is 
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ˆ ˆ ˆ ˆ 0 .0 1 8 5 0 0 .8 1 5 0 0 .9 4 4 1ˆc o v ( , ) c o v ( , ) v a r( )
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In Figure 5 we have displayed the graph of profile log-likelihood functions of ML estimates of α, β and λ. We have 

found that ML estimates of α, β, and λ exist and can be obtained uniquely. 

 

   
Figure 5. The plots of the profile log-likelihood function of ML estimates of α, β, and λ. 

 

To evaluate the goodness of fit of a given distribution we generally use the PDF and CDF plot. To get the 

additional information we have to plot Q-Q and P-P plots. In particular, the Q-Q plot may provide information about 

the lack-of-fit at the tails of the distribution, whereas the KS plot emphasizes the lack-of-fit. From Figure 6 we have 
shown that the NEEP model fits the data very well. 

 

 
Figure 6. The Q-Q plot (left panel) and KS plot (right panel) of NEEP distribution 

 

For the assessment of the potentiality of the NEEP distribution, we have calculated the Akaike information criterion 

(AIC), Bayesian information criterion (BIC), Corrected Akaike information criterion (CAIC) and Hannan-Quinn 

information criterion (HQIC) and these are presented in Table 5.  

 

Table 5 

Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

Model -LL AIC BIC CAIC HQIC 

PEE 316.9819 639.9638 647.7793 640.2138 643.1269 

EEP 317.0196 640.0393 647.8548 640.2893 643.2024 
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NEE 317.8478 639.6955 644.9058 639.8192 641.8042 

LP 318.3186 640.6372 645.8475 640.7609 642.7459 

Weibull 318.7307 641.4614 646.6717 641.5851 643.5701 

 

The Histogram and the density function of fitted distributions and Empirical distribution function with estimated 

distribution function of NEEP, Exponentiated Exponential Poisson (EEP), new exponential extension (NEE), Power 

Lindley (LP) and Weibull distributions are presented in Figure 7. 

 

 
Figure 7. The Histogram and the density function of fitted distributions (left panel) and Empirical 

distribution function with estimated distribution function (right panel). 

 

To compare the goodness-of-fit of the NEEP distribution with other competing distributions we have 

presented the value of Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von Mises (CVM) 
statistics. These three statistics are widely used to compare non-nested models and to illustrate how closely a 

specific CDF fits the empirical distribution of a given data set.  From Table 6 the result shows that the NEEP 

distribution has the minimum value of the test statistic and higher p-value, hence we conclude that the NEEP 

distribution gets quite better fit and more consistent and reliable results from others taken for comparison. 

 

Table 6 

The goodness-of-fit statistics and their corresponding p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

PEE 0.0430(0.9926) 0.0225(0.9942) 0.1639(0.9973) 

EEP 0.0366(0.9993) 0.0173(0.9989) 0.1259(0.9997) 

NEE 0.0639(0.8093) 0.0520(0.8650) 0.3465(0.8993) 

LP 0.0520(0.9498) 0.0458(0.9025) 0.3028(0.9359) 

Weibull 0.0578(0.8920) 0.0611(0.8084) 0.4058(0.8426) 

 

V. SUMMARY AND CONCLUSION 
In this study, we have introduced a three-parameter probability distribution called new exponential 

extension Poisson distribution. A comprehensive study of some statistical and mathematical properties of the 

proposed distribution including the derivation of explicit expressions for its reliability function, survival function, 

hazard function, the quantile function which is useful for calculating partition values and skewness and kurtosis, also 

we have presented skewness and kurtosis, and simulation of random numbers from the proposed distribution. The 

unknown model parameters are estimated using the method of maximum likelihood estimation and constructed their 
corresponding confidence intervals. The graph of the PDF of the proposed distribution has shown that its shape is 
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the skewed model and flexible for modeling real-life data. Also, the graph of the hazard function is monotonically 

decreasing or increasing according to the value of the model parameters. The performance of the proposed 

distribution has been evaluated by considering two real-life datasets and the results revealed that the proposed 

distribution is much flexible as compared to some other fitted distributions. 
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