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Periodic solutions for a second order nonlinear functional
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Abstract:
The second order impulsive functional differential equations with periodic coefficients

jx"(t) +a(t)x' (1) + b()x(t) = Ac(t) f (L, x(t), x(t-7(t)), t=t,

]

LAxL:L = 1(x(t)), —AX| | =3,(x(t), t=t,jez.

is considered in this work. By using Krasnoselskiis fixed point theorem, we establish some criteria for the
existence of periodic solutions to the delay impulsive differential equations.
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l. INTRODUCTION
In recent years, impulsive and periodic boundary value problems have been studied extensively in the
literature, see [1-9]. In [2,4,5,10], periodic boundary value problems were studied extensively. Jiang [4] has
applied Krasnoselskii’s fixed point theorem to establish the existence of positive solution to problem

[-x"+ Mx= (,t X, et [0g 2
J (1.1)

[X(0) x (2 ). % £0% 7 (:
he proved that there exists at least one positive solution. Zhang and Wang [10] studied (1.1) for singularity.
They gave the existence of multiple positive solutions via the Krasnoselskii’s fixed point theorem.

On the other hand, impulsive differential equations were studied extensively. In [6,8,9], authors used
the method of lower and upper solutions with monotone iterative technique to study impulsive differential
equations. In [1,7], authors used the Krasnoselskii’s fixed point theorem in a cone to impulsive differential
equations and obtained the existence of positive solutions.

Motivated by the above works, in this paper, we shall deal with the existence of a class of
higher-dimensional of second order impulsive functional differential equations with periodic coefficients

jx"(t)+a(><)'t(+)b tx)=(Apt f (Yt (xtL)t ¢=1t(

+

(A%, =1 ) max =3 ke (e

]

1.2)

Here,

;
(Al) a,b:R—> R", c¢,r:R — R are all continuous T -periodic functions, and I a(s)ds >0,
0

J'Tb(s)ds >0, r'(t)=1,forall te[0,T];
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(A2) f:R°—> R iscontinuous forany (t,x,y)e R° andis T -periodicin t forall (x,y)e R”.
(A3) There exist positive constants L and E such that

|f(t,x,y)— f(t,z,w)|£ L|x—z|+E|y—W|.
+ + + - 1 1
(Ad) 1, eC(R,R), J,eC(R ,R") withaconstant m suchthat - —J (x)< I (x)<—1J, (x),
m m
and AXL:t = x(tk+)—x(tk'),—Ax'|t:t = x'(t,)-x'(t, ) » where x(t,") and x(t,”) represent the

=1, jez" .

right and the left limit of x(t;), there existaninteger p >0 suchthat t, =t +T, I, j

For convenience, we first introduce the related definition and the fixed point theorem applied in the paper.
Definition 1.1 Let X be a Banach space and K be a closed nonempty sunset of X , K isaconeif

(1) au+ pBve K forall u,ve K andall ¢,8>0;

(2) u,—ue K imply u=o0.
Theorem 1.1 (Krasnoselskii [11]) Let X be a Banach space, and let K < X beaconein X . Assume that

Q,,Q, areopen bounded subsets of X with 0e Q,,Q, < Q,,and let

s KkN@,\Q) > K
be a completely continuous operator such that either

@ [ley|<|y| vy ek Naoa, and |gy|=|y[. vyek Noa,;or
@ [ley|=|y] vy ek Noa, and [gy|<]|y|. vyek Noa,.

Then ¢ hasa fixed pointin K (Q_Z\ KMo, .
In this paper we always assume that

(H1) f(t,&,7)=0 forall (t,&,7)e RxBC(R,R,)xR_.

1. PRELIMINARIES
In order to define the solution of (1.2) we consider the following Banach spaces:

PC(R,R)={x:R > R: x| e C(t, ;) x(t, ) =x(t,),3x(t,"), jez'}

(t) ty0)

n
is a Banach space with the norm ||x||PC =SUP, o1y 2, ‘xj (t)‘ .
j=1

PC'(R,R)={Xx:R - R: x| e C(t,,t,. ), x(t, ) =x(t), x'(t, ) =x"(t,),Ix(t, ), x(t,), jez'}

x|
(ot ' Iaten
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is also a Banach space with the norm x|, = max{[|x||__.[|x].. 3
Lemma 2.1. ([12]) Suppose that (A1, A4) holds and

Rl[exqzau@Iu)—) 1] o
0 >1, .
QT

o exp([ a(u)du) . z
t b(s)ds|,Q, = (1+ exp([. a(u)du)) R,

R, = max, o7 _[ T
exp(J0 a(u)du) -1

:
there exist continuous T -periodic functions p and g suchthat q(t) >0, J' p(u)du > 0, and
0

p(t)+q(t) =a(t),q'(t)+ p(t)g(t) =b(t) forall teR.
Therefore

p(t)+q(t) =a(t),q'(t)+ p(t)q(t) =b(t) ,teR.
Lemma 2.2. ([13]) Suppose the conditions of Lemma 2.1 hold and ¢ (t) € X . The equation
xX'(t)+ a(t) X (® b(t) x&p) (2.2)

hasa T -periodic solution. Moreover, the periodic solutions can be expressed by

X(t) = J'tMG(t,s)(o(s)ds, 2.3)

where

e jsexp[j”q(v)dszp(v)dv]du+jmexp[fuq(v)dv+jmp(v)dv]du
G(ts) = = ‘ u ; ‘ u .

fexp ([ p(u)du) - 11exp(]. a(u)du) 1]

Therefore, the equation x"(t) +a(t)x'(t) +b(t)x(t) = Ac(t) f (t,x(t),x(t—z(t)) has a T -periodic

solution, it can be expressed by

t+

x(t):.[ TG (s A s ()l xs, x(sy, v 6 ds(
and by (H1), we have
G (t,s)Ac(s) f(s,x(s),x(s—7(s)))=0,(t,s) e RZ.

The following lemma is fundamental to our discussion. Since the method is similar to that in the literature
[14], we omit the proof.
Lemma2.3. x e X isasolution of (1.2) ifand only if x € X isa solution of the equation
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x(t) = J'tm G (t,s)AC(s) f(s,x(s),x(s—7(s)))ds + z G (t,tj)J j(x(tj))

Jityeltt+T]

G (t,
Y 56 ts) 1 (x(t,).

j:tJe[t,HT] 63

Corollary 2.1. Green’s function G (t,s) satisfies the following properties:

G,t+T)=G(t,t), G(t+T,s+T)=G(ts),

exp .[1 q(v)dv

iG(t,s): p(s)G(t,s) - - )
s exp_[ q(v)dv -1

P exp.[ts p(v)dv
—G (t,s) = —-q(s)G (t,s) + T .
ot expj' p(v)dv -1

1
Lemma 2.4. ([13]) Let A = IT a(u)du,B=T"° exp(—IT Inb(u)du) . If A®> 4B, (2.5)
0 T 0

then

min“; p(u)du,J'qu(u)du} > (A-A?—4B):=1,

1
2
1

maX{IOT p(u)du'J‘OTq(u)du}S (A+ A2—4B)Z:m.

2

Therefore the function G (t,s) satisfies

T Texp(J'Ta(u)du)
0<N,=t————=<G(ts)< L
(e -1) (e

G (t,s) N,

> =0.
M M

1 1

- =M, selt,t+T],

-1)

1>

Now, before presenting our main results, we give the following assumptions.
(H2) f(t,¢4(t),4(t —z(t))) isacontinuous function of t foreach ¢ €« BC(R,R").
(H3) Forany L >0 and & > 0, thereexists & > 0, such that

(pv eBC |p|sL|y|sL|p-v|<s.0ss<T}

imply | (s, 6(5).4(s—2(5)) ~ f (5. (s).w (s—2(s)))]< ¢ .

(2.4)
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I1.  MAIN RESULTS
For every positive solution of (1.2), one has

||x||= suplE[O'T]{|x(t)|,x e X}.
Let K isaconein X , which is defined as
K ={xeX :x(t)za”x”,te[O,T]}.

Now we defineamapping T : K —» K,

(TX)(t):LHTG(t,S)/?.C(S)f(S,X(S),X(S—T(S)))dS+ z G(t,tj)Jj(x(tj))

j:tJe[t.H-T]

+ z M Ij(X(tj))’

jtyeltt+T] 0s

then we have

(Tx)(t) = j(mG(t,s)/IC(s) f(s,x(s), x(s—17(s)))ds + z G(t,t,)J,;(x(t)))

j:\ls[l,HT]

‘( exp.["q(v)dv \|
+ oy p(t)G (t,t,) - ———— 1 (x(t,))
j:ljs[t,HT]L eXpJ‘O q(v)dvflj

:J-“TG(I,S);V(;(S)f(s,x(s),x(s—f(s)))ds+ 2 Gt (x(t)
jityeltt+T]
(

FY ey ) Y | ——
it eIt T ] j:t,e[LHT]LeXpJ‘ q(v)dv—lJ

exp .[:' q(v)dv \|

1 (x(t))).

Lemma3.1. T:K — K iswell-defined.

Proof. Foreach x e K, by (H2) we have (Tx)(t) is continuous and

(Tx)(t+T) = J‘HZT G (t,s)AC(s) f (s, x(s), x(s—7(s))ds + Z G(t+T T )J J(x(tj +T))

jtjeltteT]

( |‘+T \
| exp q(v)dv ‘
+ oy P, +T)G(E+T t,+T) - ————— 1 (x(t;+T))
,»115[[“7{ expj' q(v)dv flj
0

:J'MG(t+T,v+T)lC(v+T)f(v+T,x(v+T),x(v+T —7(v+T))dv

(
+03 G(LE)I (x(t))+ Y Lp(tJ)G(t,tJ)—

exp J'll' q(v)dv \|

1 (x(t)

jtjeltteT] jtjeltteT]

exp '[DT q(v)dv —1J

_ J-HT G (t,v)AC (v) (v, x(v), x(v—z(v))dv+ >  G(tt ), (x(t)))

j‘t‘e[l,l+T]
(
. Lp(tj)G(t,tJ)

jtjelttaT]

exp Jll q(v)dv \‘
— 1, (x(t,)

exp.[oT q(v)dv —1J

= (Tx)(t).
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Thus, Tx e PC (J,R) , since

N, <G(t,s) <M, se[t,t+T],

exp_[t'q(v)dv
=p(t,)G (t.t;) - ! »otett+Tl,

-
s=t, expj q(v)dv -1
0

oG (t,s)
0s

and

oG (t,s)
< —

<SM,, t e[tt+T].
0s

2

S

We define M = max{M ,M },N =min{N ,N,}.

Hence, for x € K , we have

[ + )
x| < m LL|&c@)f Exs(0s-@s [sy) 3 I, xt, (+(Y) I, xt Jn (3.1)
itje 4T ] tjet ]
and
( - )
(Tx)(t) > N U” [ic(s) (s x(s). x(s—o(s)ps+ > I, (x(t, )+ Y Ij(x(tj))J
jtyett+T] jtjeltteT]
N[+ )
-—M U [2c(s) f (s, x(s) x(s—z(sPfds+ > 3, xt N+ Y Ij(x(tj))J
M 0 jt et t+T] jtje[t,t+T ]
> o |Tx|.

Therefore, Tx e K . This completes the proof.

Lemma3.2. T :K — K iscompletely continuous.

Proof. We first show that T is continuous .

By (H3), forany L >0 and & > 0, thereexistsa & > 0 such that

(b cnc ol L= Lo v < o) imly

SUP o .or |T(S,8(8), (s —7(8)) - f(S,W(S),W(S—T(S))|< _—,
2IMTC
where C = max_ _. c(t)|.
Since 3,,1, < C(R,R), wehave |3,(4)~3,)|<——. |1, (6)-1,0)|< .
AMp AMp

If x,y e K with ||x||£ L,”y”s L,”x— y”s S , then

DOI: 10.35629/4767-08094655 WWW.ijmsi.org 51| Page



Periodic solutions for a second order nonlinear functional differential equations with impulses

) - (Ty) ()| < j:” |G (t.8)||2c(s) f (s, x(s), x(s —2(8)) = Ac(s) f (5, y(5)., y(s — 7(5))|ds

oG (t,s)
0s

D S T (A1 ENCTCN B RCTCN I B

jtjeltteT] jtyeltt+T]

s=

<IMC IOT |G (t,9)]| £ (5. x(s). x(s = 7(s)) = F(5,y(5), y(s—7(s))ls

+ M ZP: ‘JJ(X(tj))— Jj(y(tj))‘+ M ZP: ‘Ij(x(t]‘))_ Ij(y(tj))‘

& &
<MATC ———+2Mp ——=¢
2M ATC 4Mp

forall t e [0,T ], this yields ||Tx —Ty|| < g ,thus T is continuous.

-1, v,

Next we show that T maps any bounded sets in K into relatively compact sets. Now we first prove that

f maps bounded sets into bounded sets. Indeed, let & =1, by (H3), forany x > 0, there exists 6 > 0 such

that {x,y e BC,”x”s y,”y”é ,u,”x— y”s 5,0<s<T} imply

| £(s,x(s), x(5 = 7(5)) = F(s,y(s), y(s —7(s))|<1.

Choose a positive integer N such that L S .Let x e BC anddefine
N

k

) < x(t)k

,k=0,1,2"" /N .

If ||x||< u , then

x(Ok - x(0)(k -1)|
N

teR

My
N N
Thus,
‘f(s,xk(s),xk(s—r(s))— f(s,xk’l(s),xk’l(s—f(s))‘<1
forall s e[0,T], thisyields
£ (s x(s),x(s — ()], = |1 (5. x" (), x" (s~ ()]
<y ‘f(s,xk(s),xk(s —r(s)) = (s, x""(s), x" (s - r(s))‘-r | (5.0,0)]

< N +||f||::W,

and

(3.2)
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\%umw=bmﬂmMs%bgﬂam—%u“WmMPJMsN+Mw¢=m,

hxumﬂ%uu%uws%ﬁgﬂam—uu“%p$ﬁgmkN+Mwﬂ:uy
we define U = max{U .U}

it follows from (3.1) that for t < [0,T ],

||Tx|| =sup,_, |(Tx)(t)|

T ( \
MﬂCj0|f(s,x(s),x(sr(s))|ds+ML Y |hoayn)s ¥ ‘Jj(x(tj))U

jitie[t,t+T jitie[t,t+T
I i

IA

IA

MACTW +2MpU.

Finally, for t € R, we have

1
I—q(s)G(t,s)+ S |/?,c(s)f(s,x(s),x(s—r(s))ds
I exp.[0 p(v)dv—lj
(

exp J'ts p(v)dv \|

p
+Z|L—q(s)G(t,s)+ . JJj(x(tj))
(

exp _[‘ p(v)dv

™' = |

epr'0 p(v)dv -1

\| expjtqu(v)dv \|

l]
exp J't p(v)dv
+

Lpupl—qape(nu)+

L (x(t))).

- . q(t)
expjo p(v)dv—lJ expjO q(v)dv —1 J

(3.3)
Combine (3.1)-(3.3) and Corollary 2.1, we obtain
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(T %) (1)

= SupIeR

d
‘—(TX)(t)
dt

t+T

sJ’t

exp '[l p(v)dv
T

exp jo p(v)dv -1

ds

Ac(s) f(s,x(s),x(s —r(s))| -q(s)G (t,s) +

P epr'Sp(v)dv ‘
+3 |-q(s)G (t.s) + e EREM
j=1 epr'0 p(v)dvl‘

p |( expj‘lj p(v)dv exp.[llq(v)dv \|
3y eee | |—= p(t )]+ ——= a1, (xt,]
j=1 expj'0 p(v)dv -1 exp.[0 q(v)dv -1 J
( t+T P P \ ( em \
<|ic| f(s,x(s), x(s — 7(5))|+ ) Jj(x(tj))‘+z Ij(x(tj))Hp(tj)UdsL(M lo |+ X _1))|

p epr’tiq(v)dv
+y - a1, (xt,))]
i=1|exp .[0 q(v)dv -1

m m

€ e
I )+ I
e -1 e -1

< AC(TW +U + PU)(M |o]|+ |l |u .

p(t)|.

uere o] max,. fa(o]. [P max, ..

Hence {Tx ixe K ||x|| < ,u} is a family of uniformly bounded and equicontinuous functions on [0,T].

By a theorem of Ascoli-Arzela, the function T is completely continuous.

Theorem 3.1. Suppose that (H1)-(H3), (2.1) and (2.5) and that there are positive constants R, and R, with

R, < R, such that

SUB e, [T Shs (Ds—€s [t 1P, (3.4)
SUP e s |1, B = 11,
and
0 fee, gex I0T|f (.5 ()s-¢t s [ds PP, (3.5)
infl o o L, GED]| =15,

for each 4 satisfy

RZ Rl
<A< . (3.6)
MCP, MCP,
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The

n (1.2) has a positiveT -periodic solution x with R < ||x|| <R,.

Proof. Let x e K and ||x||= R, . By (3.4) and (3.6), we have

|(Tx)(t)|§MJ"HT|ﬂc(s)f(s,x(s),x(s—r(s))|ds+M > ‘Ij(x(tj))‘

jtjeltteT]

< ﬂMCJ‘tHT|f (s, x(s), x(s—c(s)|ds+M ¥ ‘I j(x(tj))‘

j:ljs[l,1+T]

Rl
< MCP, + Mpl,=R,
MCP,

forall t e [0,T]. This implies that ||Tx||§ ||x|| for xe KNoa,, 0, ={xeX ||x||< R}

If xeK and||x|| = R, . By (3.5) and (3.6), we have

[m)®)= N LM |4C () f (s, x(5), x(s — 7 (s))]ds

> aNC [ (s x(s).x(s - 7(s))|ds
I |

R t+T
> —2—NC | | £ (s.x(s), x(s — 7 (s5))|ds =R,
NCP, t

forall te[0,T]. Thus, ||Tx||z||x|| for xe KNon, 0, ={xe X,||x||< R,}.

has

1.
[2].
[31.
[4].
[5].
[6].
[71.

8.
9.

[10].

[11].
[12].

[13].

[14].

By Krasnoselskii’s fixed point theorem, T hasa fixed pointin K N (Q_2 \ Q). Itis easy to say that (1.2)

a positive T -periodic solution x with R, < ||x|| < R, . This completes the proof.
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