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ABSTRACT: The Vekua equation is an areolar differential equation from a complex function, which cannot be 

solved in general case. Its origin is from a practice problem from the theory of elasticity. In the paper are 

considered the zeroes of one type of Vekua equation,  ,
W

A z z W
z






, which can be solved with quadratures, with 

the Sturm approach to the zeroes of the regular differential equations R eu W  and Imv W .    
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I. INTRODUCTION  
The equation  

 d̂ W

d z
A W BW F           (1) 

where ( )A A z , ( )B B z  and ( )F F z  are given complex functions from a complex variable z D   is the 

well known Vekua equation [1] according to the unknown function ( )W W z u iv   . The derivative on the left 

side of this equation has been introduced by G.V. Kolosov in 1909 [2]. During his work on a problem from the 

theory of elasticity, he introduced the expressions     

 
ˆ1

2
[ ( )]

u v v u d W

x y x y d z
i

   

   
           (2) 

and 
ˆ1

2
[ ( )]

u v v u d W

x y x y d z
i

   

   
           (3) 

known as operator derivatives of a complex function ( ) ( , )W W z u x y   ( , )iv x y  from a complex variable 

z x iy   and z x iy  corresponding. The operating rules for this derivatives are completely given in the 

monograph of Г. Н.Положиǔ [3] (page18-31). In the mentioned monograph are defined so cold operator 

integrals 

  
( )f z d z




 and ( )f z d z




 

from z x iy   and  z x iy   corresponding (page 32-41). As for the complex integration in the same 

monograph is emphasized that it is assumed that all operator integrals can be solved in the area D. 

 In the Vekua equation (1) the unknown function ( )W W z  is under the sign of a complex conjugation 

which is equivalent to the fact that ( )B B z  is not identically equaled to zero in D. That is why for (1) the 

quadratures that we have for the equations where the unknown function ( )W W z  is not under the sign of a 

complex conjugation, stop existing.  

 This equation is important not only for the fact that it came from a practical problem, but also because 

depending on the coefficients A, B and F the equation (1) defines different classes of generalized analytic 

functions. For example, for ( ) 0F F z   in D the equation (1) i.e. 

  d̂ W

d z
A W BW           

which is called canonical Vekua equation, defines so cold generalized analytic functions from fourth class; and 

for 0A   and 0F   in D, the equation (1) i.e. the equation d̂ W

d z
B W  defines so cold generalized analytic 

functions from third class or the (r+is)-analytic functions [3], [4]. 
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 Those are the cases when 0B  . But if we put 0B  , we get the following special cases. In the case 

0A  , 0B   and 0F   in the working area D   the equation (1) takes the following expression 
ˆ

0
d W

d z
  and 

this equation, in the class of the functions ( , ) ( , )W u x y iv x y   whose real and imaginary parts have unbroken 

partial derivatives , ,x y xu u v    and 
yv   in D, is a complex writing of the Cauchy - Riemann conditions. In other 

words it defines the analytic functions in the sense of the classic theory of the analytic functions. In the case 

0B   in D is the so cold areolar linear differential equation [3] (page 39-40) and it can be solved with 

quadratures. 

 

II. MAIN PART AND DISCUSSION 
 

 Let's put      , , , , ,z x iy W u iv A z z a x y ib x y      , in   

  ,
W

A z z W
z





         (4) 

and  ,
W

A z z W
z





         (5) 

so, we get the equations   

      
1

2 2

u v i u v
a ib u iv a u b v i b u a v

x y y x

      
            

      

     (4´) 

    
1

2 2

u v i u v
a ib u iv

x y y x

      
        

      

     (5´) 

or, if we separate the real from the imaginary part, we get the following corresponding systems: 

 

 

 

2

2

u v
a u b v

x y

u v
b u a v

y x

 
  

 

 
  

 

        (6) 

and 

 

 

 

2

2

u v
a u b v

x y

u v
b u a v

y x

 
  

 

 
  

 

        (7) 

 The two systems (6) and (7) are linear and very similar. So, it is expected to have similar difficulties 

and properties in the process of their solution. But it is not like that at all. The equation (4) can be solved with 

quadratures , i.e. 

    
 ,

1 1 1
,

A z z d z

W z z u iv C z e




          (8) 

and the equation (5) cannot be solved with quadratures. If in (8) we separate the real and the imaginary part, we 

have that  

 
 

   

 
   

 

      

1 1

co s s in

a ib d x id y a d x b d y i b d x a d y

a d x b d y

u iv i e i e e

e i b d x a d y i b d x a d y

   

 

   



  
     


     

 

where from we get that  

 

 

   

 

   

1

1

c o s s in

c o s s in

a d x b d y

a d x b d y

u e b d x a d y b d x a d y

v e b d x a d y b d x a d y

 

 





     
 

     
 

 

 

    (9) 

so, we can formulate the following theorem: 

 Theorem 1: The Vekua equation (4) or the corresponding system of partial equations (6) has a general 

solution given with the exact quadratures (9), where    , , ,a a x y b b x y   are given continuous functions and  

 
   

   

, R e ,

, Im

x y C z

x y C z

 

 

 

 
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where  C z  is an arbitrary analytic function from z , i.e.: 

 ,
x y y x

          

 For the system (7), which is similar to the system (6) but with different order of the coefficients  

   , , ,a a x y b b x y  , a theorem like this does not exists, but we can consider the solutions 

2 2
R e , Imu W v W  in the form of possible iterations. Since a system of partial equations of first order is 

equivalent to one equation of second order, the idea is to compare them.   

 А) Comparison between a quadrature solvable system of partial equations and the zeroes of their 

solutions using Sturm theory. 

 Let's consider only the equations (6). We would like to see if in them are hidden ordinary differential 

equations, continuous on the O x -axis, for 0y  . Then  

        , 0 , , 0u x u x v x v x   

therefore 0 , 0
u v

y y

 
 

 
 so if we put in the system (6)   

      , , 0
y

a x y a x a x      

and      , , 0
y

b x y b x b x   

now, ,
u d u v d v

x d x x d x

 
 

 
 so 

    2
d u

a x u b x v
d x

   
        (10) 

    2
d v

b x u a x v
d x

   
        (11) 

We can eliminate one of the functions if we differentiate, and we get  

 
2

2
2

d u d u d v
a u a b v b

d x d xd x

 
    

 
 

       (12) 

and if we express v  from (10) 

 
 

 

1

2

a x d u
v u

b x b d x
  .        (13) 

Substituting  (11) and (13) in (12), then we get an ordinary linear differential equation of second order, i.e.   

 

 

2

2

2

2 2

2 2 2 2

1
2 2 2 2 2

2

2 2
2 2 4 4

2

2
2 2 2 4 4

d u d u d v
a u a b v b

d x d xd x

d u a d u
a u a b u b b u a v

d x b b d x

b d u b a u u
a a a u b u a b

b d x b b

b d u b
a a a a b a u

b d x b

     

 
         

 

     
       

   
   

    
      

   
   

   

or  
2 22

4 2 4 0
b a b

u a u a a b u
b b

    
        

   
   

 

or  
2 2 2

4 4 2 0
b a b

u a u a b a u
b b

    
        

   
   

.     (14) 

With the substitution  

1
4

2

b
a d x

b
u e z x

 
 

 
 


  , the equation (14) can be reduced to a canonical form  

   0z x z             (15) 

where    

2

2 2 2 1 1
4 2 4 4

2 4

a b b b
x a b a a a

b b b

     
        

   
   

    (16) 
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and  
   

   

0

0

R e ,

Im ,

y

y

a x A z z

b x A z z









  

According to the Sturm theory and its theorems, if  

 1)   0x   on  0 ,   and 

 2)  x  is big enough to make oscillations, i.e.  
0

x d x



  to diverge, and the equation (14) by u  

along the x  axis  0y   has oscillatory solutions. So, follows 

 Theorem 2: The real part of the solution of a quadrature solvable Vekua equation (4) has solutions 

 , 0u x  along the x  axis  0y  , which fulfill an ordinary differential equation (14) which depends on 

 
0

,
y

A z z


i.e. from  , 0a x  and  , 0 0b x  . Under the condition the canonical equation (15) to have a 

positive coefficient (16) along the whole half axis 0x   and the integral  
0

x d x



  to diverge,  , 0u x  has an 

infinite many zeroes along the x  axis. 

 This is regarding the zeroes of R eu W  for 0y  , i.e.  , 0 0u x  . But, we need also the common 

zeroes of   , 0u x  and  , 0v x . 

 B) Zeroes of the imaginary part  , 0 0v x  , for 0y   .  

 If now in the system of equations (10)+(11) we eliminate  u x , in a similar fashion, we will get an 

ordinary differential equation for  v x . If we differentiate the equation (11) 

 
2

2
2

d v d u d v
b u b a v a

d x d xd x

 
    

 
 

       (17) 

and if we eliminate  u x  from (11), and 
d u

d x
 from (10), we get that 

  
1 1

2

d v
u a x v

b d x

 
 

 
 

         and    

2
1 1

2 2 2
2

d u d v a d v a
a x a x v b v v b v

d x b d x b d x b

  
       

  

 

and if we substitute  u x  and 
d u

d x
 in (17) we get that:    

 
2 2

2

1 1
2 2 2 2 2 2

2

d v d v a d v a d v
b a v b v b v a v a

b d x b d x b d xd x

  
         

   

 

 
2

2 2

2
2 2 2 4 4 2

d v b d v b
a a a a b a v

b d x bd x

    
       

   
   

 

or  
2

2 2

2
4 2 4 2 0

d v b d v b
a a a b a v

b d x bd x

    
      

   
   

     (18) 

 If we compare A) and B), i.e. the equations (14) for u  and (18) for v , we can see that they are identical 

equations. Therefore, they have the same fundamental system of integrals, i.e.  

 
 

 

1 1 2 2

1 2

u x C u C u

v x A u B u

 

 
        (19) 

only the chosen particular integral can be different, which depends on the initial conditions. Therefore we have 

the following  

 Theorem 3: The Vekua equation (4) along the O x -axis for 0y  , fulfills has the same differential 

equations both for the real and for the imaginary part.    

 That means from W u iv  , where u v  we have  1W u i   and for 0W   it is enough that 

0u   or 0v  . Then the solution is 

      1 1 0 1 0W u iv u i v i i           

i.e. we have only the trivial solution of the linear equation (4). This corresponds to the considered in [5].  

 We have the same from the quadrature solution (9) : 
1 1

0u v   gives that  
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   

   

c o s s in 0

c o s s in 0

b d x a d y b d x a d y

b d x a d y b d x a d y

 

 

   

   

 

 

 

where from  

 

 
 

 

 
 

 

,

,

,

,

x y
tg b d x a d y

x y

x y
tg b d x a d y

x y









 

 





 

i.e.  
 

 
      or 2 2

  . 

But ,   are parts of a constant  C z :  C z i    which should be analytic function from z . So,  

    , ,x y x y    

and the Cauchy - Riemann conditions hold, so  

 ,
x y y x

          

and along the O x -axis is 0 , 0
y y

     so we get 0, 0
x x

     i.e. i const   , or  C z c o n s t  and the 

solution is only the trivial, i.e.   

 
 ,

1
0 0

A z z d z

W e




   . 

 

III. A COMPARISON BETWEEN THE EXACT ZEROES ONLY OF  , 0u x  AND ONLY OF

 , 0v x  WITH THE APROXIMATE STURM ZEROES 

 Now, we will consider the formula (9) in order to find the zeroes of the solutions of the equation (4), 

found with quadratures:  

 
   

   

c o s s in 0

c o s s in 0

b d x a d y b d x a d y

b d x a d y b d x a d y

 

 

   

   

 

 

      (9) 

As we consider the discussion only along the x -axis, i.e. for 0y   we have that 0d y   and 

       , , ,x x a a x b b x        so, 

 
       

       

c o s s in 0

c o s s in 0

x b x d x x b x d x

x b x d x x b x d x

 

 

 

 

 

 

  

which is possible only for   . It remains on the x -axis to be 

    c o s s inb x d x b x d x   

and cos   is equal to s in   only in the points , 0 ,1, 2 ,
4

k k


     

i.e.  
4

b x d x k c o n s t


    

and we cannot conclude anything else. But, the ordinary differential equations, which are the same both for u  

and v , i.e. 

  
2 2 2

4 4 2 0
b a b

u a u a b a u
b b

    
        

   
   

     (14) 

and whose final form is   0z x z           (15) 

where    

2

2 2 2 1 1
4 2 4 4

2 4

a b b b
x a b a a a

b b b

     
        

   
   

    (16) 

According to the Sturm theorems if  

 1)   0x    



A Comparison Between The Zeroes Of The Solutions Of One Quadrature Solvable .. 

DOI: 10.35629/4767-09051117                               www.ijmsi.org                                                            16 | Page 

 2)  
0

x d x



  diverges,  

then they have Sturm oscillatory solutions  

 
 1

c o s
x

z x


          (20) 

 
 2

s in
x

z x


          (21) 

given with the series of iterations 

 
1

1z                       (22) 

  
2 2 2

2
z x x x d x d x x d x              (23) 

where, as we see from (16),  x  depends from two continuous functions  ,a x y  and  ,b x y , therefore the 

function  x  itself is continuous  ,a b   . 

 

IV. CONCLUSION  

 With (20), (21) and (16) one trigonometry of second order is determined,   
I I

y
T a x , whose base 

depends on two functions a  and b  for which the conditions 1) and 2) hold. The zeroes of the functions 

 
c o s

x
x


 and 

 
s in

x
x


 are in the solutions of the equations  

   , 0 ,1, 2,x x n n          (24) 

and    2 1 , 1, 2 ,
2

x x k k


           (25) 

and the sinusoidal solution 
 s in

s in 0 ,

x

x




    



, and the cosinusoidal solution  co s co sx x


   

remains limited.  

 But, as the equations (24) and (25) never overlap, because they have same left hand side, and always 

different right hand side, i.e. n  is a full multiple of   , and  2 1
2

k


  is an odd multiple of 
2


, and it is never 

whole. Therefore, the zeroes only of u  and only of  v  are always different. We can formulate the following  

 Theorem 4: Only the real part  ,u x y  of the solution W  of the equation 

  ,
W

A z z W
z





 

and only the imaginary part  ,v x y  of the solution W can have infinite number of zeroes along the x -axis, but 

neither of them overlap, so that there are not common zeroes, except the trivial solution 0u v  . 

 

V. EXAMPLES 
 Example 1: Let's consider the formulas (14) and (18) on one elementary example, the equation 

  3 2
W

z z W
z


 


 

where    , 3 2 2 2 2 4A z z z z z z z x z x z          . The solution can be found with quadratures, i.e. 

    
 

   

 
   

       

2

2

2 2 2 2
2 2 2 2

3 2
3 2

32

3 2 4 2 2 4 2

,

co s 2 s in 2

a

zz z d z
zz

zz z

x y x y ixy x y ixy x y

W z z C z e C z e C z e

C z e e C z e e C z e xy i xy






     


   

        

 

and since  c o s 2 x y  and  s in 2 x y  are never equal to zero at the same time, except the trivial solution 0W  , 

other zeroes of the solution may appear only in isolated zeroes of the analytic coefficient  C z . 

 Let's see now the differential equation for  , 0u x  and  , 0v x  along the O x -axis. That is the equation 

(one same equation for both of them): 

  
2 2

4 4 2 2 0
b b

u a u a b a a u
b b

    
           

   
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where      , 3 2 3 2 5A z z a ib z z x iy x iy x iy           

        , 5 , , , 0 5 , , 0 0 5, 0a x y x b x y y a x x b x a b          

and since 0, 0b b    along the O x -axis  0y  , that is why the equation is as follows 

    
2 2

4 4 2 2 0b u b a b u b a b a b a b u             

and it does not give a result for 0b  . But, we have a quadrature solution.  

 Example 2: Let's take into consideration not so elementary case where   0b x  . Let 

          , , , , 0 , , 1
x x x

b x y e y a x y x b x e b x e a x         

that means we have chosen     2,
2 2

z z

x z z z z
A z z x i e y a ib i e

i


  

        

 

, so we have a Vekua equation  

 2 2

2 2

z z z z
W z z z z

ie W z ie W
z

 
      

        
     

 

and the equation (14) is 

  
2 2

4 4 2 2 1 0

x x

x

x x

e e
u x u x e x

e e

   
           

   

 

or      
2 2

1 4 4 2 0
x

u x u x e x x i u        
 

 

which may have Sturm zeros. The final form   0z x z    has a coefficient  

 

         

 

22 2

2 2 2 2 2

1 1
4 2 1 1 4 1 4

2 4

1 1 1 9
4 4 2 2 1 4 1 6 4 2 4 0

2 4 4 4

x

x x x

x x e x x x

x e x x x e x e x

         

               

 

for 0x  . Therefore,   0x  , and the equation 2 9
4 0

4

x
z e x z

 
     

 

has oscillatory solutions  

 
1

2

c o s

s in

z x

z x








 

and from the substitution  

 
 

21
1

2 2

x
u x d x x

u e z e z
   

     

we have solutions for u  

 

2

2

2

1

2

2

c o s

s in

x
x

x
x

u e x

u e x





 

 

 

 

 

in the form of Sturm functions.  
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