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Abstract: The purpose of this paper is to introduce and study a new class of b generalized closed sets defined in 
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I. INTRODUCTION 
It is found from literature that during recent years many topologists are interested in the study of 

generalized types of closed sets.  For instance, a certain form of generalized closed sets was initiated by Levine 

[7], Following the trend, we have introduced and investigated a kind of generalized closed sets, the definition 

being formulated in terms of grills.  The concept of grill was first introduced by choquet [2] in the year 1947.  

From subsequent investigations it is revealed that grills can be used as an extremely useful device for 

investigation of a number of topological problems. 

 

II. PRELIMINARIES 
Definition 2.1:     A non-empty collection G of non-empty subsets of a topological space X is called a Grill  if  

(i)     and            and  

    (ii)       and                    
Let G be a grill on a topological space (X,   In an operator  :P(X)      was defined by  (A) =        
             ,      denotes the neighborhood of x. Also the map  :P(X)      given by        
     for all A        Corresponding to a grill G, on a topological space(X, ) there exist a unique topology  G 

on X given by  G =              X - U}where for any A   ,                G – cl(A).  Thus a 

subset A of X is   G – closed (resp.  G – dense in itself) if        or equivalently if        (resp A  
 (A)). 

In the next section, we introduce  and analyze a new class of generalized closed sets, namely          closed sets 

in terms of a given grill G. The definition having a close bearing to the above operator  . 

Throughout the paper, by a space X we always mean a topological space (X,  ) with no separation properties 

assumed.  If    , we shall adopt the usual notations int(A) and cl(A) respectively for the interior and closure 

of A in (X,  ). Again  G – cl(A) and  G – int(A) will respectively denote the closure and interior of A in (X,  G).  

Similarly, whenever we say that a subset A of a space X is open (or closed), it will mean that A is open (or 

closed) in (X,      For open and closed sets with respective to any other topology on X, eg.  G we shall write  G   

- open and  G – closed. The collection of all open neighborhoods of a point X in (X,  ) will be denoted by  (x).  

(X,  , G) denotes a topological space (X,  ) with a grill G. 
 

Definition 2.2:  A subset A of a topological space (X,  ) is called 

1. b open if                          

2. b*g closed if cl(A)                                 

3. (b*g)* closed if cl(A)    whenever A   and U is b*g open 

4.   closed if A =         where                                         
5.   closed if A=         where                                           
The complements of the above mentioned closed sets are respective open sets. 

Definition 2.3:  A function f: (X,  )        is called  

1. continuous if    (V) is open in X, for every     

2.  G continuous if    (V),  G is open in X, for every     
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3. (b*g)* continuous if    (V), is (b*g)* open in X, for every     

4.   continuous if    (V), is    open in X, for every      

5.   continuous if    (V), is    open in X, for every     

 

Definition 2.4:  A function f:              ) is called 
1.Closed if f(A) is closed in Y, for every closed set A of X 

2. G closed if f(A) is   G  closed in Y,for every closed set A of X 

3.(b*g)* closed if f(A) is (b*g)* closed in Y, for every closed set A of X  

4.  closed if f(A) is   closed in Y, for every closed set A of X 

5.  closed if f(A) is    closed in Y, for every closed set A of X 

Definition 2.5:  A function F : (X,  )      ) is called 

1. Open if f(U) is open in Y, for every U    

2.  G open if f(U) is G open in Y, for every U    

3. (b*g)* open if f(U) is (b*g)* open in Y for every U    

4.   open if f(U) is   open in Y for every     

5.   open if f(U) is   open in Y for every     

Theorem 2.6: [7] Let (X, ) be a topological space and G be a grill on X.  Then for any A , B X  the 

following hold 

(a) 
A B ( A ) ( B )    

 

(b) 
(A B ) (A ) (B )     

 

(c) 
( (A ) (A ) c l( (A )) c l(A )      

 

 

3.         Closed Sets 

Definition 3.1:  A subset A of (X, ,G) is called         closed if         whenever A    and U is b*g open 

in X. 

Theorem 3.2:  Let (X,  , G) be a grill topological space 

1. Every closed set in X is          closed 

2. Every   G closed set is          closed 

3. Every non member in G is          closed 

4. Every (b*g)* closed set is          closed 

5. Every   closed set is         closed 

6. Every   closed set is          closed 

 

Proof  :  

(1)  Let A be closed in X. Then cl(A) = A.  Let A               b*g open                   Hence A is 

        closed. 

(2)  Let A be  G closed. Then          Let A   where U is b*g open         .  Hence A is          

closed 

(3) Let    .  Let     where U is b*g open then         . Hence A is         closed 

(4) Let A be (b*g)* closed Let      where U is b*g open.               Hence A is         closed 

(5)  Let A be   closed. Then         .  Let A     where U is b*g open                          
Hence A is         closed 

(6)  Let A be   closed. Then           Let       where U is b*g open                        
Hence A is         closed. 

The converse of the above statements need not be true can be seen from the following examples. 

 

Example 3.3:  Let X={a, b, c}                                {a, c} is         closed but not closed 

 

Example 3.4:  Let X={a, b, c}                                     {b, c} is         closed but not 

 Gclosed 

 

Example 3.5:  Refer example 3.3 

{a, c} is         closed but not a non member of G. 
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Example 3.6:  Refer example 3.3. {a, c} is         closed but not (b*g)*  closed 

 

Example 3.7:  Refer example 3.3. {a, c} is         closed but not   closed 

 

Example 3.8:  Refer example 3.3 {a, c} is         closed but not   closed  

 

Lemma 3.9:   Let (X, ) be a space and G be a grill on X.  If A   X is  

G – dense in itself, then 

(A) = cl (A) = G – cl(A) = cl(A) 
 

 

Theorem 3.10:  Let (X,  ) be a topological space and G be a grill on X.  Then for A      A is         closed iff 

 G  − cl (A)    and U is b*g open.   

 

Proof:  Suppose A is         closed then                    Therefore  G – cl(A)         and U 

is b*g open.  Conversely,  G – cl(A)   ,     and U is b*g open.  Therefore A                .  

Hence A is         closed. 

 

Theorem 3.11:  Let G be a grill on a space (X,  ).  If A is  G – dense is itself and         closed, then A is 

(b*g)* closed. 
 

Proof:  Let A be  G – dense in itself, then by Lemma 3.9               Since A is         closed        

when U is b*g open in X and       Therefore         when U is b*g open in X and       Hence A is 

(b*g)* closed.   

 

Theorem 3.12: For any grill G on a space (X,     the following are equivalent 

a) Every subset of X is         closed 

b) Every b*g open subset of (X,    is  G closed  

 

Proof:        let A be b*g open in (X,     Then by (a).  A is G(b*g)* closed so that          Therefore A is 

 G closed.   
        Let    X and U be b*g open in (X,    such that    .  Then by (b),       . Also,     
            .  Therefore A is         closed. 

 

Theorem 3.13:  Let (X,    be a topological space and G be a grill on X and A, B be subsets of X such that 

     G – cl(A).  If A is         closed, then B is         closed. 

 

Proof:  Suppose B    and U is b*g open in X. Since A is G(b*g)* closed.  

                                       G – cl(A)            

Now       G – cl(A)  which implies  G –         G – cl(B)   G – cl(A)  

Therefore  G – cl(A) =  G – cl(B)  

Therefore by (1)   G – cl(B)     Hence B is         closed.   

Corollary 3.14:  G – closure of every         closed set is         closed. 

 

Theorem  3.15:  Let G be a grill on a space (X,    and A, B be subsets of X such that            If A is 

        closed, then A and B are (b*g) closed. 

 

Proof:  Let          .Then      G –          By theorem 3.13, B is          closed.  Again     

                              This implies that              By theorem 3.11, A and B are  

(b*g) closed. 

 

Theorem 3.16:  Let G be a grill on a space      .  Then A subset A of X is         open iff    G – int(A) 

whenever     and F is  (b*g) closed. 

 

Proof:  Let A be         open set and     where F is b*g closed.  Then             This implies that      

                 .  Hence  G – cl(X - A)      which implies    G – int(A). 
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Conversely, F   G – int(A),                            .  Hence A is          open. 

 

4.  G(b*g)* Continuous Function: 

Definition 4.1:  A function                 is said to be          continuous (resp. (b*g)* continuous).  if 

   (V) is         open. (resp. (b*g)*  open) for each      

 

Theorem 4.2:   

1. Every continuous function is         continuous 

2. Every  G continuous function is         continuous 

3. Every (b*g)* continuous function is         continuous 

4. Every   continuous function is         continuous 

5. Every   continuous function is         continuous 

Proof:  Obvious 

Converse of the above statements need not be true can be seen from the following examples: 

 

Example 4.3:  Refer Example 3.4 

Define f                by f(a) = c, f(b) = b,    f(c) = c  f is         continuous but not continuous as         

[{a, b}]={b} is not open. 

 

Example 4.4:  Let                         G ={{a}, {b}, {c,}, {a, b}, {a, c}, {b, c}, X} 

Define f               by f(a) = b, f(b) = c, f(c) = a, f is          continuous but not  G  continuous as 

   ({a}) = {c} is not  G  open. 

 

Example 4.5:  Refer Example 3.3   

Define f by f(a) = b, f(b) = a, f(c) = c, f is          continuous but not (b*g)* continuous  as      ({a}) = {b} is 

not (b*g)*  open. 

 

Example 4.6:  Take the previous example   

f is          continuous but not   continuous as             is not   open. 

 

Example 4.7:  Take the previous example f is          continuous but not   continuous as             ({a}) = {b} 

is not   open. 
 

Definition 4.8:  A function f :               is said to be         closed if f(A) is         closed in Y, for 

every closed set A of X.   

 

Theorem 4.9:   

1. Every closed function is         closed 

2. Every  G  closed function is         closed 

3. Every (b*g)* closed function is         closed 

4. Every   closed function is         closed 

5. Every   closed function is         closed 

 

Proof:  Obvious  

Converse of the above statements need not be true can be seen from the following examples. 
 

Example 4.10:  Refer example 3.4  

Define f                by f(a) = a, f(b) = b, f(c) = b, f is          closed but not closed as f({c}) = {b} is 

not closed. 

 

Example 4.11  Refer example 4.4   

Define f                by f(a) = c, f(b) = a, f(c) = b, f is          closed but not  G closed as f({b, c}) = {a, 

b} is not  G closed. 

 

Example 4.12:  Refer example 3.3  
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Define f               by f(a) = b, f(b) = a, f(c) =c, f is          closed but not (b*g)* closed as f({b, c}) = 

{a, c} is not (b*g)*  closed. 

Example 4.13:  Take the previous example  

 f is          closed but not   closed as f({b, c}) = {a, c} is not   closed. 

 

Example 4.14:  Take the previous example  

f is          closed but not   closed as f({b, c}) = {a, c} is not   closed. 

 

Theorem 4.15:  If f             is closed and                 is          closed, then     g o         

                     is closed. 

 

Theorem 4.16:  A map f      is          closed if and only if for each subset S of Y and each open set U of X 

such that           there is a          open subset V of Y such that S    and          U. 

Proof:  Let f be          closed.  Let S   and U be an open set of X such that     (S)   .   

X -  U is closed in X. f(X -U) is          closed in Y. V = Y   f(X   U) is          open in Y              (V)=X - 

   (f(X   U))              

Conversely, let F be closed in X     (f(F c))   Fc and Fc open in X.  

By assumption, there exists a         open subset V of Y such that f(F c)    and                 (V)     .   

This implies F  (   (V))c,   

Hence Vc    (f(  ))c = f(F)   f(    (V))c      so, f(F) =     which is          closed. 

 

Definition 4.17:  Let X and Y be topological spaces.  A map f : X  Y is called          open map if the image 

of every open set of X is          open in Y. 

 

Theorem 4.18:  For any bijection map  f: X -> Y the following are equivalent 

1.     : Y     is          continuous map 

2. f is         open map 

3. f is         closed map 

Proof:  (1)      Let U be open in X.  (f-1)-1 (U)  is         open in Y.  That is f(U) is         open in Y.   

         Let F be a closed set of X.  Then Fc is open  in X.  By assumption f(Fc) is         open in Y   f(Fc) = 

(f(F))c  is         open in Y, f(F) is         closed in Y. 

         Let F be closed in X f(F) is         closed in Y.        (f-1)-1 (F) is         closed in Y.  Hence 

    is          continuous map. 

 

Definition 4.19:  Let       be a topological space and         be a grill topological space.  A function    f : 
               is said to be         open (resp.         closed),  if for each          f(V) is         open 

(resp.         closed) in          

 

Theorem 4.20: 

1. Every open function is         open 

2. Every  G
 open function is         open 

3. Every (b*g)* open function is         open 

4. Every        function is         open 

5. Every   open function is         open 

 
Proof:  Obvious  

Converse of the above statements needs not be true can be seen from the following examples. 

 

Example 4.21:  Refer example 3.4  

 Define                 by f(a)=b, f(b) =b, f(c) = c, f is         open but not open as f({a, b}) = {b} is not 

open. 

 

Example 4.22:  Refer example 4.4   

Define                 by f(a) = c, f(b) = b, f(c) =a,  f is         open but not  G open as f({a}) = {c} is not 

 G open. 
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Example 4.23:  Refer example 3.3  

Define                 by f(a)= b, f(b)= b, f(c) = c, f is         open but not         open as f({a}) = {b} is 

not         open. 

 

Example 4.24:  Refer example 4.23   

f is          open but not   open as f({a}) = {b} is not   open. 

 

Example 4.25:  Refer example 4.23  

 f is         open but not   open as  f({a}) = {b} is not   open. 
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