b Generalized Closed Sets In Grill Topological Spaces

M.Kanchana¹, V. Senthil Kumaran², Y. Palaniappan³

M. Phil, Scholar, Aringar Anna Government Arts College, Musiri, Tamil Nadu, India. 1

Associate Professor of Mathematics, Aringar Anna government Arts College, Musiri, Tamil Nadu, India, 2.

Associate Professor of Mathematics (Retd.), Aringar Anna Government Arts College, Musiri, Tamil Nadu, 3.

India.

Abstract: The purpose of this paper is to introduce and study a new class of b generalized closed sets defined in terms of a grill G on X. The characterization of such sets along with certain other properties of them are obtained.

Keywords : b - closed, b*g closed, $G_{(b*q)*}$ closed, 2010 subject classification : 54B05, 54C05

Date of Submission: 10-11-2021

Date of Acceptance: 25-11-2021

INTRODUCTION I.

It is found from literature that during recent years many topologists are interested in the study of generalized types of closed sets. For instance, a certain form of generalized closed sets was initiated by Levine [7], Following the trend, we have introduced and investigated a kind of generalized closed sets, the definition being formulated in terms of grills. The concept of grill was first introduced by choquet [2] in the year 1947. From subsequent investigations it is revealed that grills can be used as an extremely useful device for investigation of a number of topological problems.

II. PRELIMINARIES

A non-empty collection G of non-empty subsets of a topological space X is called a Grill if **Definition 2.1:** (i) $A \in B$ and $A \subseteq B \subseteq X \implies B \in G$ and

(ii) $A, B \subseteq X$ and $A \cup B \in G \implies A \in G$ or $B \in G$.

Let G be a grill on a topological space (X,τ) In an operator $\emptyset: P(X) \to P(X)$ was defined by $\emptyset(A) = \{x \in X/U \cap X\}$ $A \in G, \forall \cup \in \tau(x)$, $\tau(x)$ denotes the neighborhood of x. Also the map $\Psi: P(X) \to P(X)$ given by $\Psi(A) = A \cup V$ $\phi(A)$ for all A $\in P(X)$. Corresponding to a grill G, on a topological space(X, τ) there exist a unique topology τ_G on X given by $\tau_{G} = \{U \subseteq X/\Psi(X - U) = X - U\}$ where for any $A \subseteq X$, $\Psi(A) = A \cup \varphi(A) = \tau_G - cl(A)$. Thus a subset A of X is τ_G - closed (resp. τ_G - dense in itself) if $\psi(A) = A$ or equivalently if $\phi(A) \subseteq A$ (resp $A \subseteq$ Ø(A)).

In the next section, we introduce and analyze a new class of generalized closed sets, namely $G_{(b*g)*}$ closed sets in terms of a given grill G. The definition having a close bearing to the above operator \emptyset .

Throughout the paper, by a space X we always mean a topological space (X, τ) with no separation properties assumed. If $A \subseteq X$, we shall adopt the usual notations int(A) and cl(A) respectively for the interior and closure of A in (X, τ). Again τ_G – cl(A) and τ_G – int(A) will respectively denote the closure and interior of A in (X, τ_G). Similarly, whenever we say that a subset A of a space X is open (or closed), it will mean that A is open (or closed) in (X, τ). For open and closed sets with respective to any other topology on X, eg. τ_G we shall write τ_G - open and τ_G - closed. The collection of all open neighborhoods of a point X in (X, τ) will be denoted by $\tau(x)$. (X, τ, G) denotes a topological space (X, τ) with a grill G.

Definition 2.2: A subset A of a topological space (X, τ) is called

- b open if $A \subseteq int(cl(A)) \cup cl(int(A))$ 1.
- b^*g closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is b open 2.
- 3. $(b^*g)^*$ closed if cl(A) \subseteq U whenever A \subseteq U and U is b^*g open
- 4. θ closed if A = θ cl(A) where θ cl(A) = { x \in X : cl(U) \cap, A \neq \emptyset \forall \cup \in \tau \text{ and } X \in U }

 δ closed if A= δ cl(A) where δ cl(A) = {X \in X, int(cl(U) \cap A \neq \emptyset, \forall U \in \tau \text{ and } X \in U} 5.

The complements of the above mentioned closed sets are respective open sets.

Definition 2.3: A function f: $(X, \tau) \rightarrow (y, \sigma)$ is called

- continuous if $f^{-1}(V)$ is open in X, for every $V \in \sigma$ 1.
- τ_{G} continuous if $f^{-1}(V)$, τ_{G} is open in X, for every $V \in \sigma$ 2.

- 3. $(b^*g)^*$ continuous if $f^{-1}(V)$, is $(b^*g)^*$ open in X, for every $V \in \sigma$
- 4. θ continuous if $f^{-1}(V)$, is θ open in X, for every $V \in \sigma$
- 5. δ continuous if $f^{-1}(V)$, is δ open in X, for every $V \in \sigma$

Definition 2.4: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called

1.Closed if f(A) is closed in Y, for every closed set A of X

 $2.\tau_G$ closed if f(A) is τ_G closed in Y, for every closed set A of X

3.(b*g)* closed if f(A) is (b*g)* closed in Y, for every closed set A of X

4.0 closed if f(A) is 0 closed in Y, for every closed set A of X

 $5.\delta$ closed if f(A) is $~\delta$ closed in Y, for every closed set A of X

Definition 2.5: A function $F : (X, \tau) \rightarrow (Y, \sigma)$ is called

- 1. Open if f(U) is open in Y, for every $U \in \tau$
- 2. τ_G open if f(U) is τ_G open in Y, for every $U \in \tau$
- 3. $(b^*g)^*$ open if f(U) is $(b^*g)^*$ open in Y for every $U \in \tau$
- 4. θ open if f(U) is θ open in Y for every $U \in \tau$
- 5. δ open if f(U) is δ open in Y for every $U \in \tau$

Theorem 2.6: [7] Let (X, τ) be a topological space and G be a grill on X. Then for any A, B \subseteq X the following hold

(a) $A \subseteq B \Rightarrow \phi(A) \subseteq \phi(B)$

(b)
$$\phi(A \cup B) = \phi(A) \cup \phi(B)$$

(c)
$$\phi(\phi(A) \subseteq \phi(A) = cl(\phi(A)) \subseteq cl(A)$$

3. G_{(b*g)*} Closed Sets

Definition 3.1: A subset A of (X,τ,G) is called $G_{(b*g)*}$ closed if $\emptyset(A) \subseteq U$ whenever $A \subseteq U$ and U is b^*g open in X.

Theorem 3.2: Let (X, τ, G) be a grill topological space

- 1. Every closed set in X is $G_{(b*g)*}$ closed
- 2. Every τ_G closed set is $G_{(b*g)*}$ closed

3. Every non member in G is $G_{(b*g)*}$ closed

- 4. Every $(b^*g)^*$ closed set is $G_{(b*g)*}$ closed
- 5. Every θ closed set is $G_{(b*g)*}$ closed
- 6. Every δ closed set is $G_{(b*g)*}$ closed

Proof :

(1) Let A be closed in X. Then cl(A) = A. Let $A \subseteq U$, where U is b^*g open $\emptyset(A) \subseteq cl A = A \subseteq U$. Hence A is $G_{(b*g)*}$ closed.

(2) Let A be τ_G closed. Then $\emptyset(A) \subseteq A$. Let $A \subseteq U$ where U is b^*g open $\emptyset(A) \subseteq A \subseteq U$. Hence A is $G_{(b^*g)^*}$ closed

(3) Let $A \notin G$. Let $A \subseteq U$ where U is b*g open then $\emptyset(A) = \emptyset \subseteq U$. Hence A is $G_{(b*g)*}$ closed

(4) Let A be $(b^*g)^*$ closed Let $A \subseteq U$, where U is b^*g open. $\emptyset(A) \subseteq cl(A) \subseteq U$ Hence A is $G_{(b^*g)^*}$ closed

(5) Let A be θ closed. Then θ cl(A) = A. Let A \subseteq U, where U is b*g open ϕ (A) \subseteq cl(A) \subseteq θ cl(A) = A \subseteq U. Hence A is $G_{(b*g)*}$ closed

(6) Let A be δ closed. Then $\delta \operatorname{cl} A = A$ Let $A \subseteq U$, where U is b*g open $\emptyset(A) \subseteq \operatorname{cl} A \subseteq \delta \operatorname{cl} A = A \subseteq U$. Hence A is $G_{(b*g)*}$ closed.

The converse of the above statements need not be true can be seen from the following examples.

Example 3.3: Let X={a, b, c} $\tau = \{\emptyset, \{a\}, \{a, b\}, X\} G = \{\{a, c\}, X\} \{a, c\} \text{ is } G_{(b*g)*} \text{ closed but not closed}$

Example 3.4: Let $X = \{a, b, c\} \tau = \{\emptyset, \{a, b\}, X\}G = \{\{b\}, \{a, b\}, \{b, c\}, X\} \ \{b, c\}$ is $G_{(b*g)*}$ closed but not τ_G closed

Example 3.5: Refer example 3.3 $\{a, c\}$ is $G_{(b*g)*}$ closed but not a non member of G.

Example 3.6: Refer example 3.3. $\{a, c\}$ is $G_{(b*g)*}$ closed but not (b*g)* closed

Example 3.7: Refer example 3.3. $\{a, c\}$ is $G_{(b*g)*}$ closed but not θ closed

Example 3.8: Refer example 3.3 {a, c} is $G_{(b*g)*}$ closed but not δ closed

Lemma 3.9: Let (X, τ) be a space and G be a grill on X. If $A \subseteq X$ is τ_G – dense in itself, then $\phi(A) = cl \phi(A) = \tau_G - cl(A) = cl(A)$

Theorem 3.10: Let (X, τ) be a topological space and G be a grill on X. Then for $A \subseteq X$, A is $G_{(b*g)*}$ closed iff $\tau_G - cl(A) \subseteq U$ and U is b*g open.

Proof: Suppose A is $G_{(b*g)*}$ closed then $\emptyset(A) \subseteq U \Longrightarrow A \cup \emptyset(A) \subseteq U$. Therefore $\tau_G - cl(A) \subseteq U$, $A \subseteq U$ and U is b*g open. Conversely, $\tau_G - cl(A) \subseteq U$, $A \subseteq U$ and U is b*g open. Therefore $A \cup \emptyset(A) \subseteq U \Longrightarrow \emptyset(A) \subseteq U$. Hence A is $G_{(b*g)*}$ closed.

Theorem 3.11: Let G be a grill on a space (X, τ) . If A is τ_G – dense is itself and $G_{(b*g)*}$ closed, then A is (b*g)* closed.

Proof: Let A be τ_G – dense in itself, then by Lemma 3.9 $\emptyset(A) = cl(A)$. Since A is $G_{(b*g)*}$ closed $\emptyset(A) \subseteq U$ when U is b*g open in X and $A \subseteq U$. Hence A is $(b^*g)^*$ closed.

Theorem 3.12: For any grill G on a space (X, τ) , the following are equivalent

a) Every subset of X is $G_{(b*g)*}$ closed

b) Every b*g open subset of (X, τ) is τ_G closed

Proof: (a) \Rightarrow b let A be b*g open in (X, τ). Then by (a). A is $G_{(b^*g)^*}$ closed so that $\emptyset(A) \subseteq A$. Therefore A is τ_G closed.

(b) \Rightarrow (a) Let $A \subseteq X$ and U be b*g open in (X, τ) such that $A \subseteq U$. Then by (b), $\emptyset(U) \subseteq U$. Also, $A \subseteq U \Rightarrow \emptyset(A) \subseteq \emptyset(U) \subseteq U$. Therefore A is $G_{(b*g)*}$ closed.

Theorem 3.13: Let (X, τ) be a topological space and G be a grill on X and A, B be subsets of X such that $A \subseteq B \subseteq \tau_G - cl(A)$. If A is $G_{(b*g)*}$ closed, then B is $G_{(b*g)*}$ closed.

Proof: Suppose $B \subseteq U$ and U is b*g open in X. Since A is $G_{(b^*g)^*}$ closed. $\emptyset(A) \subseteq U \Longrightarrow \tau_G - cl(A) \subseteq U \to (1)$ Now $A \subseteq B \subseteq \tau_G - cl(A)$ which implies $\tau_G - cl(A) \subseteq \tau_G - cl(B) \subseteq \tau_G - cl(A)$ Therefore $\tau_G - cl(A) = \tau_G - cl(B)$ Therefore by (1) $\tau_G - cl(B) \subseteq U$. Hence B is $G_{(b^*g)^*}$ closed. **Corollary 3.14:** τ_G - closure of every $G_{(b^*g)^*}$ closed set is $G_{(b^*g)^*}$ closed.

Theorem 3.15: Let G be a grill on a space (X, τ) and A, B be subsets of X such that $A \subseteq B \subseteq \emptyset(A)$. If A is $G_{(b*g)*}$ closed, then A and B are (b*g) closed.

Proof: Let $A \subseteq B \subseteq \phi(A)$. Then $A \subseteq B \subseteq \tau_G - cl(A)$. By theorem 3.13, B is $G_{(b*g)*}$ closed. Again $A \subseteq B \subseteq \phi(A) \Longrightarrow \phi(A) \subseteq \phi(B) \subseteq \phi(\phi(A)) \subseteq \phi(A)$. This implies that $\phi(A) = \phi(B)$. By theorem 3.11, A and B are (b^*g) closed.

Theorem 3.16: Let G be a grill on a space (X, τ) . Then A subset A of X is $G_{(b*g)*}$ open iff $F \subseteq \tau_G - int(A)$ whenever $F \subseteq A$ and F is (b*g) closed.

Proof: Let A be $G_{(b*g)*}$ open set and $F \subseteq A$ where F is b*g closed. Then $X - A \subseteq X - F$. This implies that $\emptyset(X - A) \subseteq \emptyset(X - F) = X - F$. Hence $\tau_G - cl(X - A) \subseteq X - F$ which implies $F \subseteq \tau_G - int(A)$.

Conversely, $F \subseteq \tau_G - int(A)$, $\tau_G - cl(X - A) \subseteq X - F \emptyset(X - A) \subseteq X - F$. Hence A is $G_{(b*g)*}$ open.

4. G_{(b*g)*} Continuous Function:

Definition 4.1: A function $F: (X, \tau, G) \to (Y, \tau)$ is said to be $G_{(b*g)*}$ continuous (resp. (b*g)* continuous). if $f^{-1}(V)$ is $G_{(b*g)*}$ open. (resp. (b*g)* open) for each $V \in \sigma$.

Theorem 4.2:

- 1. Every continuous function is $G_{(b*g)*}$ continuous
- 2. Every τ_G continuous function is $G_{(b*g)*}$ continuous
- 3. Every $(b^*g)^*$ continuous function is $\overline{G}_{(b^*g)^*}$ continuous
- 4. Every θ continuous function is $G_{(b*g)*}$ continuous
- 5. Every δ continuous function is $G_{(b*g)*}$ continuous

Proof: Obvious

Converse of the above statements need not be true can be seen from the following examples:

Example 4.3: Refer Example 3.4

Define $f : (X, \tau, G) \rightarrow (X, \tau)$ by f(a) = c, f(b) = b, f(c) = c f is $G_{(b*g)*}$ continuous but not continuous as f^{-1} [{a, b}]={b} is not open.

Example 4.4: Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}$ $G = \{\{a\}, \{b\}, \{c,\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ Define f: $(X, \tau, G) \rightarrow (X, \tau)$ by f(a) = b, f(b) = c, f(c) = a, f is $G_{(b*g)*}$ continuous but not τ_G continuous as $f^{-1}(\{a\}) = \{c\}$ is not τ_G open.

Example 4.5: Refer Example 3.3

Define f by f(a) = b, f(b) = a, f(c) = c, f is $G_{(b*g)*}$ continuous but not (b*g)* continuous as $f^{-1}(\{a\}) = \{b\}$ is not (b*g)* open.

Example 4.6: Take the previous example

f is $G_{(b*g)*}$ continuous but not θ continuous as $f^{-1}(\{a\} = \{b\} \text{ is not } \theta \text{ open.}$

Example 4.7: Take the previous example f is $G_{(b*g)*}$ continuous but not δ continuous as $f^{-1}(\{a\}) = \{b\}$ is not δ open.

Definition 4.8: A function $f: (X, \tau) \to (Y, \sigma, G)$ is said to be $G_{(b*g)*}$ closed if f(A) is $G_{(b*g)*}$ closed in Y, for every closed set A of X.

Theorem 4.9:

- 1. Every closed function is $G_{(b*g)*}$ closed
- 2. Every τ_G closed function is $G_{(b*g)*}$ closed
- 3. Every $(b^*g)^*$ closed function is $G_{(b^*g)^*}$ closed
- 4. Every θ closed function is $G_{(h*g)*}$ closed
- 5. Every δ closed function is $G_{(b*g)*}$ closed

Proof: Obvious

Converse of the above statements need not be true can be seen from the following examples.

Example 4.10: Refer example 3.4

Define $f: (X, \tau) \rightarrow (X, \tau, G)$ by f(a) = a, f(b) = b, f(c) = b, f is $G_{(b*g)*}$ closed but not closed as $f({c}) = {b}$ is not closed.

Example 4.11 Refer example 4.4

Define $f: (X, \tau) \rightarrow (X, \tau, G)$ by f(a) = c, f(b) = a, f(c) = b, f is $G_{(b*g)*}$ closed but not τ_G closed as $f(\{b, c\}) = \{a, b\}$ is not τ_G closed.

Example 4.12: Refer example 3.3

Define f: $(X, \tau) \rightarrow (X, \tau, G)$ by f(a) = b, f(b) = a, f(c) = c, f is $G_{(b*g)*}$ closed but not (b*g)* closed as $f(\{b, c\}) = \{a, c\}$ is not (b*g)* closed.

Example 4.13: Take the previous example

f is $G_{(b*g)*}$ closed but not θ closed as $f(\{b, c\}) = \{a, c\}$ is not θ closed.

Example 4.14: Take the previous example

f is $G_{(b*g)*}$ closed but not δ closed as $f(\{b, c\}) = \{a, c\}$ is not δ closed.

Theorem 4.15: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is closed and g: $(Y, \sigma) \rightarrow (Z, \eta, G)$ is $G_{(b*g)*}$ closed, then g o f: $(X, \tau) \rightarrow (Z, \eta, G)$ is $G_{(b*g)*}$ is closed.

Theorem 4.16: A map $f: X \to Y$ is $G_{(b*g)*}$ closed if and only if for each subset S of Y and each open set U of X such that $f^{-1}(S) \subseteq U$, there is a $G_{(b*g)*}$ open subset V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$. **Proof:** Let f be $G_{(b*g)*}$ closed. Let $S \subseteq Y$ and U be an open set of X such that $f^{-1}(S) \subseteq U$. X - U is closed in X. f(X - U) is $G_{(b*g)*}$ closed in Y. V = Y - f(X - U) is $G_{(b*g)*}$ open in Y $f^{-1}(V)=X - f^{-1}(f(X - U)) \subseteq X - (X - U) = U$ Conversely, let F be closed in X $f^{-1}(f(F^c)) \subset F^c$ and F^c open in X. By assumption, there exists a $G_{(b*g)*}$ open subset V of Y such that $f(F^c) \subseteq v$ and $f^{-1}(V) \subseteq F^c$. This implies $F \subseteq (f^{-1}(V))^{c}$.

Hence $V^c \subseteq (f(F^c))^c = f(F) \subseteq f(f^{-1}(V))^c \subseteq v^c$ so, $f(F) = V^c$ which is $G_{(b*g)*}$ closed.

Definition 4.17: Let X and Y be topological spaces. A map $f : X \to Y$ is called $G_{(b*g)*}$ open map if the image of every open set of X is $G_{(b*g)*}$ open in Y.

Theorem 4.18: For any bijection map f: X -> Y the following are equivalent

1. $f^{-1}: Y \to X \text{ is } G_{(b*g)*}$ continuous map

2. f is $G_{(b*g)*}$ open map

3. f is $G_{(b*g)*}$ closed map

Proof: (1) \Rightarrow (2) Let U be open in X. (f¹)⁻¹ (U) is $G_{(b*g)*}$ open in Y. That is f(U) is $G_{(b*g)*}$ open in Y. (2) \Rightarrow (3) Let F be a closed set of X. Then F^c is open in X. By assumption f(F^c) is $G_{(b*g)*}$ open in Y f(F^c) = (f(F))^c is $G_{(b*g)*}$ open in Y, f(F) is $G_{(b*g)*}$ closed in Y.

(3) \Rightarrow (1) Let F be closed in X f(F) is $G_{(b*g)*}$ closed in Y. f(F) = (f¹)⁻¹ (F) is $G_{(b*g)*}$ closed in Y. Hence f⁻¹ is $G_{(b*g)*}$ continuous map.

Definition 4.19: Let (X, τ) be a topological space and (Y, σ, G) be a grill topological space. A function $f : (X, \tau) \rightarrow (Y, \sigma, G)$ is said to be $G_{(b*g)*}$ open (resp. $G_{(b*g)*}$ closed), if for each $V \in \tau$, f(V) is $G_{(b*g)*}$ open (resp. $G_{(b*g)*}$ closed) in (Y, σ, G) .

Theorem 4.20:

- 1. Every open function is $G_{(b*g)*}$ open
- 2. Every τ_G open function is $G_{(b*g)*}$ open
- 3. Every $(b^*g)^*$ open function is $G_{(b^*g)^*}$ open
- 4. Every θ open function is $G_{(b*g)*}$ open
- 5. Every δ open function is $G_{(b*a)*}$ open

Proof: Obvious

Converse of the above statements needs not be true can be seen from the following examples.

Example 4.21: Refer example 3.4

Define $f: (X, \tau) \rightarrow (X, \tau, G)$ by f(a)=b, f(b)=b, f(c)=c, f is $G_{(b*g)*}$ open but not open as $f(\{a, b\}) = \{b\}$ is not open.

Example 4.22: Refer example 4.4

Define $f : (X, \tau) \to (X, \tau, G)$ by f(a) = c, f(b) = b, f(c) = a, f is $G_{(b*g)*}$ open but not τ_G open as $f(\{a\}) = \{c\}$ is not τ_G open.

Example 4.23: Refer example 3.3

Define $f : (X, \tau) \rightarrow (X, \tau, G)$ by f(a)=b, f(b)=b, f(c)=c, f is $G_{(b*g)*}$ open but not $G_{(b*g)*}$ open as $f(\{a\}) = \{b\}$ is not $G_{(b*a)*}$ open.

Example 4.24: Refer example 4.23 f is $G_{(b*q)*}$ open but not θ open as $f(\{a\}) = \{b\}$ is not θ open.

Example 4.25: Refer example 4.23

f is $G_{(b*q)*}$ open but not δ open as $f(\{a\}) = \{b\}$ is not δ open.

REFERENCES:

- [1].
- D.Andrijevic., "b open sets", Mat. Vesink, 48, 59 64, 1996 G Choquet, "Sur les notations de filter et grille", Comptes Rendus Acad. Sci. Paris, 224(1947), 171 173 [2].
- Dhananjoy Mandal and M. N. Mukherjee, "On a type of generalized closed sets", Bol. Soc. Paran. Mat. 30 1(2012), 67-76 [3].
- J. Dontchev and T. Noiri, "Quasi Normal spaces and π_g closed sets", Acta. Math. Hunger, 89(3) (2000), 211-219 J. Dontchev and H. Maki, "On θ generalized closed sets", Topology Atlass [4].
- [5].
- [6]. S. Fomin, "Extensions of topological spaces", Ann. Math., 44(1943), 471-480
- N. Levine, "Generalized closed sets in topology", Rend. Circ. Mat. Palermo, (2), 19(1970), 89 96 [7].
- B. Roy and M. N. Mukherjee, "On a typical totpology induced by a grill", Soochow J. Math., 33(4)(2007), 771 786 [8].
- [9]. M. H. Stone, "Application of the theory of Boolean rings to general topology", Trans. Amer. Math. Soc., 41(1937), 374 - 481